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The aim of this thesis is to develop a scalable algorithm for multilinear regres-
sion [1]. Multilinear regression resides between linear and nonlinear regression
models, such as neural networks (NN), which are widely used machine learning
tools. While linear regression is simple and interpretable, it is less capable of mod-
eling complex phenomena than its nonlinear counterpart. Multilinear regression
is a trade-off between both, resulting in an expressive model with more meaning-
ful variables than in NNs, as it is based on multilinear algebra. Unfortunately, the
number of coefficients of a multivariate polynomial depends exponentially on its
degree. In this thesis, we employ a low-rank tensor decomposition to break this
exponential dependency, known as the curse of dimensionality (CoD), allowing
us to develop a scalable, optimization-based algorithm.

Tensors, or multiway arrays, are higher-order generalizations of vectors and
matrices. Tensor analogues of established matrix decompositions are powerful
tools in signal processing, data analysis, and machine learning [2]. The main
advantage of using tensor decompositions within this work stems from their
ability to break the CoD. The polyadic decomposition (PD) decomposes an
Nth-order tensor T as a sum of rank-1 tensors, where a rank-1 tensor is equal
to the outer product, denoted by ⊗, of N nonzero vectors:
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An Nth-order tensor of size I× I×· · ·× I suffers from the CoD since it contains
IN entries. By approximating such a tensor with a low-rank PD, i.e., a PD with
low R, that only has NRI parameters, this curse is broken.

An Nth-degree homogeneous polynomial p(x) with variables x ∈ RI can be
expressed by means of a symmetric3 tensor of order N and the mode-n product4:

p(x) = T ·1 xT ·2 xT · · · ·N xT. (2)
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3 A symmetric tensor is invariant to every possible permutation of its N dimensions.
4 The mode-n product ·n of A ∈ RI1×···×IN and B ∈ RJ×In is defined as (A ·n
B)i1...in−1jin+1...iN =

∑In
in=1 ai1...iN bjin .
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For example, a degree-two homogenous polynomial can be written as p(x) =
xTTx = T ·1 xT ·2 xT. We assume that T has approximately low rank. This
makes sense as real-life data can often be modelled using parsimonious represen-
tations due to some inherent structure. For example, measurements of a physical
property that are governed by underlying differential equations or the dataset
of a recommender system that contains users which behave in similar patterns.
Compact models such as low-rank matrix and tensor decompositions are often
used for large-scale problems in scientific computing and compressed sensing [3].

Thanks to this low-rank assumption, T in Eq. (2) can be replaced by a low-
rank PD. The symmetry of T is exploited to obtain an even more compact model
by using a symmetric PD, i.e., B(n) = B for 1 ≤ n ≤ N , which requires fewer
parameters than a general PD, namely RI. Therefore this model avoids the CoD

since a multivariate polynomial generally has (I+N−1)!
N !(I−1)! coefficients.

In order to derive an optimization-based algorithm, we fit the PD-constrained
regression model to a dataset X ∈ RI×M ,y ∈ RM as the following set of linear
equations with a structured solution in a compressed-sensing style approach [4]:

y ≈ (X�T X�T · · · �T X) vec (Jc;B,B, · · · ,BK) , (3)

where �T denotes the row-wise Khatri–Rao product.
To compute the model variables B and c, we use a Gauss–Newton (GN) al-

gorithm with dogleg trust region to minimize the cost function 1
2 ||r||

2
2 in which

r equals the difference between the left and right hand side of Eq. (3). By si-
multaneously exploiting both the Khatri–Rao and PD structure in Eq. (3) in
the derivation of the cost function, gradient, Jacobian and Gramian for the GN
algorithm, we obtain a scalable algorithm. Indeed, the overall per-iteration com-
plexity of the algorithm is O(MR2I2), in contrast to O

(
MRNIN

)
for a naive

algorithm that does not exploit all structure.
To conclude, we have formulated a scalable optimization-based algorithm for

multilinear regression through the use of a low-rank symmetric PD. In [5], we
demonstrate high accuracy of our model on a materials science dataset.
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