Comparing Exploration Approaches in Deep
Reinforcement Learning for Traffic Light Control

Yaniv Oren!, Rolf A. N. Starre!, and Frans A. Oliehoek!

Technical University Delft, Mekelweg 5 Delft, the Netherlands {y.oren@student.,
r.a.n.starre@, f.a.oliehoek@}tudelft.nl

Abstract. Identifying the most efficient exploration approach for deep reinforcement
learning in traffic light control is not a trivial task, and can be a critical step in
the development of reinforcement learning solutions that can effectively reduce traffic
congestion. It is common to use baseline dithering methods such as e-greedy. However,
the value of more evolved exploration approaches in this setting has not yet been
determined. This paper addresses this concern by comparing the performance of
the popular deep Q-learning algorithm using one baseline and two state of the art
exploration approaches, and their combination. Specifically, e-greedy is used as a
baseline, and compared to the exploration approaches Bootstrapped DQN, randomized
prior functions, and their combination. This is done in three different traffic scenarios,
capturing different traffic profiles. The results obtained suggest that the higher the
complexity of the traffic scenario, and the larger the size of the observation space
of the agent, the larger the gain from efficient exploration. This is illustrated by the
improved performance observed in the agents using efficient exploration and enjoying
a larger observation space in the complex traffic scenarios.
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1 Introduction

Traffic congestion is a global predicament. For instance, in the EU alone its cost is estimated
to be 1% of the EU’s GDP [15]. One approach for reducing this cost is optimization of traffic
flows by improving traffic light control policies. To find such policies, reinforcement learning
(RL) has a strong appeal as a paradigm that is able to find high performance solutions to
sophisticated problems. Research has been done into the application of RL to the problem of
traffic light control optimization in the past [1],[4],[13],[14],[18], often specifically concerning
application of deep RL algorithms [4],[13], [18].

A fundamental principle of RL is exploration, and the balance between exploration and
exploitation. Namely, how much does the agent explore its environment, versus how much
it opts for actions that it expects to return the most cumulative reward. Many different
exploration approaches exist for reinforcement learning [3], [6], [10]-[12]. These approaches
often perform differently in different settings, in addition to having different computational
costs [11],[12]. It has been shown that for some RL settings, simple exploration approaches
such as e-greedy are insufficient for RL to be able to perform well, or at all [11],[12], which can
be caused by the reward function used and the complexity of the specific problem tackled.
This illustrates the importance of identifying effective exploration techniques for specific RL
settings. To the best of our knowledge, there has not been an attempt to investigate the
importance of efficient exploration in deep RL in the setting of traffic light control.
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This paper investigates a comparison between different exploration approaches in deep
RL for traffic light control. This, to facilitate better deep RL by identifying the value of
evolved exploration approaches in this setting, such as higher sample efficiency, or higher
final policy score. For that purpose, this paper compares the performance of the popular
deep Q-learning algorithm (DQN) [10] using one baseline and two state of the art exploration
approaches, and their combination. Specifically, e-greedy is used as a baseline, and compared
to the exploration approaches Bootstrapped DQN, randomized prior functions, and their
combination. This is done in three different traffic scenarios, ranging from simplified to
simulating real traffic, in order to investigate the effect of exploration in different traffic
profiles.

This paper first introduces a theoretical background for deep RL and exploration. Second,
a description of the exploration techniques compared, along with the modeling of traffic light
control as an RL problem, are given. This is then followed by an explanation of the research
methodology and the experimental setup, leading to a presentation of the results obtained
and their analysis. Last, ethical and epistemic concerns are considered, implications of the
work are discussed and conclusions are drawn.

Altogether, the results obtained suggest a link between the complexity of the traffic
scenario, the amount of information accessible to the agent, and the gain from efficient
exploration. This is illustrated by the improved performance observed in the agents using
efficient exploration and enjoying a large observation space, in the complex traffic scenarios.

2 Background

This section introduces background information relevant to the work presented in this
paper. First, an overview of reinforcement learning (RL), is given, laying the basis for an
introduction to deep RL and a description of the deep Q-learning (DQN) algorithm [10]
that follows. Last, the principle of exploration is explained, followed by an overview of
dithering [12], deep and directed exploration.

2.1 Reinforcement learning

In RL, an agent operates in an environment. The environment provides information regarding
the state the agent is in and what actions it can execute. The environment is usually
described in the form of a Markov decision process (MDP), a stochastic control process
often used to model decision making in partially stochastic domains. A Markov decision
process is represented as a four-tuple, M = (5, A, P, R), where S represents the state space,
A the action space, P the transition function and R the reward function.

The agent interacts with the environment by observing a state s; € S, executing an action
as € A, and receiving a reward r; € R for the action executed. The agent is attempting to
learn a policy 7, such that the expected reward over time is maximised.

In the Q-learning algorithm [17], the value of state-action pairs is estimated by the agent,
using iterative Bellman updates: Qu+1(s¢, ar) = Qi(st, ar) + afys — Qi (8¢, ar)], where « is the
learning rate, and the target y; = ry +y max, Q¢(St+1, a). St+1 denotes the new state arrived
at after choosing action a; in state s;, a any action available at state s;;1, and 0 <y < 1,
is a discount factor. In many scenarios however, the state-action pair space is too large
for the computation or memorisation of each value Q(s,a) to be tractable. To avoid this
problem, function estimators such as neural networks can be used to estimate the @ value.
This gives rise to the use of neural networks in reinforcement learning, and specifically the
deep Q-Learning (or deep Q-networks) algorithm, commonly referred to as DQN [7],[10].
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2.2 Deep reinforcement learning with DQN

The DQN algorithm uses deep neural networks to estimate a mapping from states to Q-
values [10]. Instead of saving or computing each Q(s,a) value separately, the algorithm
learns a parameterized value function Q(s,a;6;). As a result, rather than learning the Q-
values directly, the algorithm learns the parameter set 6 of the Q-function. The previous
Q-learning update then becomes:

Or41 =0 + a(y: — Q(st,a450¢)) Vo, Q(5¢, ar;0)

Here, y; = 41 + ymaxg Qi(si41,a;6;). To prevent instabilities, the DQN algorithm uses
an additional network, termed the target network, 6~ [10]. The target network is the same
as the regular, or online, network. However, it only updates every certain 7 time-steps, by
copying the parameters 6 of the online network. This target network is used by the DQN
algorithm in the target term, which becomes instead: y; = r1y1 + ymax, Q¢(st41,a;0; ).

Double DQN [16] is a commonly used modification suggested to the original DQN
algorithm, which aims to reduce overoptimism caused by estimation errors, which DQN
is prone to. This is done by decoupling the selection of an action from its evaluation [16]. In
vanilla DQN, in the term y; = r11+7 max, Q:(St+1, a; 0; ), the agent uses the same network
0~ for both selecting and evaluating an action. The double-DQN algorithm proposes using
the online network 6 to choose the action, and the target network 6~ to evaluate the choice.
The target term y; used in the double DQN update then becomes:

Yr = reg1 + YQe(Si41, arg max Q¢ (s¢41,a;0;); 6, )
a

2.3 Exploration in reinforcement and deep reinforcement learning

In order to find an optimal policy through experience alone, which is the general premise
of RL, the agent must encounter the rewards that are part of an optimal policy at least
once. This leads directly to a necessity to explore the environment - if the agent does not
explore, how will it encounter valuable rewards that do not lie over its existing policy’s
path? However, the agent is also expected to efficiently converge into an optimal policy,
and not only explore its environment. This leads to one of the fundamental principles of
RL - exploration vs exploitation. Different approaches have been developed - ranging from
dithering, random action choosing exploration [10], to more evolved notions such as deep
and directed exploration [11],[12], and others. These approaches each attempt to achieve
efficient exploration through different means - from simplicity of computation to effective
analysis of the agent’s knowledge and uncertainty.

Dithering exploration The common baseline exploration strategy used in DQN is a
dithering exploration method, or e-greedy. In e-greedy, the agent takes a random action
(i.e., explores) with probability €, and with probability 1 — e the agent takes the best action
according to its current () value estimation. e-greedy achieves state of the art performance
against many popular benchmarks [12], [16]. However, as discussed in [12], in environments
where rewards are scarce and distanced in the state-action space, and their values have
a large spread, the dithering exploration of e-greedy can take an exponentially long time
to arrive at high-valued rewards. This raises the necessity for a more advanced type of
exploration, that can be directed over over multiple time steps. These concepts have been
coined ’directed exploration’ and ’deep exploration’ [12].
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Deep & directed exploration Directed exploration attempts to improve the efficiency
of the agent’s exploration by directing it. For example, to previously unexplored or under-
explored areas of the state-action space. To achieve a measure of directed exploration, an
uncertainty measure can be used - the more uncertain the agent is about the value of some
state or action, the more it can prioritize exploration. For directed exploration to be effective,
it often doesn’t suffice for it to be directed over one, or small number of time steps [12], but
must be directed over multiple time steps. The term ’deep exploration’ is used to describe
such an exploration approach, that is directed over multiple time steps [12].

3 Exploration In Deep Reinforcement Learning for Traffic Light
Control

This section will first motivate the choice to evaluate exploration techniques that focus on
deep and directed exploration. Following that, the agent used in the experiments is outlined,
and the exploration approaches it implements are described. Last, the modelling of traffic
light control as an RL problem used in this paper is presented.

3.1 DMotivation

This paper opts to specifically identify the value of exploration approaches that focus on
achieving deep exploration, in the setting of traffic light control. These approaches have
been chosen not only for being state of the art in this field, but also for their potential
in this setting. In heavy traffic scenarios, suboptimal actions may carry a long term effect.
They may immediately cause congestion, and once there, it may be difficult to return to less
congested states [13]. Deep exploration may be able to improve the agent’s ability to escape
such scenarios, by directing its exploration along a specific path. While this path will not
necessarily pay in the short run, it may allow the agent to recover from congestion in the
longer run. Additionally, the ability of the agent to more efficiently explore areas of the state
action space that lie beyond areas plagued by negative rewards, as a result of employing deep
exploration, may allow the agent to learn optimal policies that will otherwise be unlikely for
a dithering agent to ever achieve.

3.2 The agent

The agent used in the experiments presented in this paper is a DQN agent, using the double-
DQN [16] modification. The agent implements the following exploration mechanisms: e-
greedy, Bootstrapped DQN (BDQN) [12] and randomized prior functions [11]. The implementation
used in this paper, based on [8] and modified for the setting of traffic light control, allows the
agent to use any combination of the three different mechanisms listed above. e-greedy has
been described in section 2.3, and has been chosen as it is the common baseline exploration

used in DQN [10],[16]. BDQN and randomized prior functions have been chosen as state of

the art exploration approaches that aim to achieve efficient deep exploration, and in addition,

for their ability to elegantly combine for even better exploration. BDQN and randomized
prior functions are described below.
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Bootstrapped DQN BDQN has been developed in an attempt to achieve a measure
of deep exploration, discussed in section 2.3. In order to achieve deep exploration, BDQN
approximates a distribution over Q-values, using a bootstrap. Bootstrapping is a technique
used to approximate a population distribution from a sample distribution, using random
sampling with replacement [5].

The bootstrap can be implemented efficiently using a shared neural network with several
heads. The shared network’s role is to learn a feature representation, while each head is
providing an independent Q-values estimation. A visualization can be found in figure 1. In
learning, the algorithm randomly samples an estimator (a "head’) out of the bootstrap, and
follows the policy which is optimal for that estimator for some number of steps greedily or e-
greedily. In the experiments done in this paper e-greedy is used. The resulting experiences are
gathered in a buffer, and are available for all estimators to learn from, under some probability
that decides which experiences will be available to which estimator. Each estimator is trained
against its own target network / target network head.

In evaluation, an ensemble voting policy is used to evaluate which action has been chosen
by most heads. If there is no majority vote, an arbitrary choice is made between the actions
chosen by the most heads. The action is then chosen and executed.

Shared network

Fig. 1: The BDQN architecture proposed in [12].

BDQN attempts to achieve a measure of deep exploration by following the policy of one
of the estimators for some number of steps. For this to be effective, the agent must guarantee
that in areas of uncertainty (under-explored areas of the state action space), the different
estimators will have different estimations. However, in BDQN this uncertainty, or variety in
the Q-value estimations, is only based on the observed data [11]. This can be problematic,
because in environments where rewards are very scarce, the agent may learn to believe that
there is no reward, and lose all uncertainty, rather than direct its exploration to remote,
unexplored areas of the state action space in the hope that they may contain rewards. Such
'prior’ drive for exploration, that is independent from the data, is proposed in [11] in the
form of randomized prior functions.

Randomized prior functions While usable with a regular DQN agent, the randomized
prior functions algorithm is designed to be combined with the BDQN model. To achieve
independent uncertainty, the randomized prior functions model consists of one additional
neural network for each Q-value estimator, or one shared neural network with one head for
each estimator. This additional network or head p is combined with the original estimator
f to form the final output @, through a scaling factor 8: Q@ = f + Bp [11]. @ is then
used in the learning process to minimize the training loss. This results in uncertainty that
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is independent from the data: the ) value estimation always includes a neural network
initialized with random parameters. No matter the uniformity of experiences the agent
encounters (for example, only similar, negative rewards), it will still consider some additional
prior 'assumption’, in the form of the prior function, in regard to previously un-encountered
states. As a result, each estimator will always approximate the @ value of as yet un-
encountered states differently. This allows the agent to better direct its exploration, by
guaranteeing diversity between the estimations of the different bootstrap heads for previously
un-encountered states.

3.3 The model

The modeling of the traffic light control problem as an RL problem used in this paper is
follows work done in [13]. The problem is modelled as an MDP M = (S, A, P, R), where S is
the state space, A is the action space, P the transition function and R the reward function.
The open source traffic simulator SUMO [9] is used to generate the environment.

State space, action space & transition function The state provided to the agent is
represented as a set of stacked frames of size x € Z*. Each frame is a matrix containing
current locations of vehicles in the agent’s observation space, and the current traffic light
configuration. The observation space of the agent is a square centered at the intersection
controlled. Each location of a vehicle is marked with a 1, and empty locations with a 0. The
traffic lights configuration is presented in the matrix as numbers between 0 and 1 chosen
arbitrarily. Stacking several frames allows the agent to extrapolate vehicle speed from the
state representation. x = 4 was used in the experiments, to achieve a balance between too
much information (complicating the learning process), and too little information (hindering
the capacity of the agent to learn effective policies).
The actions available to the agent at each time step are one of two traffic light configurations,

representing which lanes receive a green light. The transition function is defined by SUMO.

Reward function The reward function used is a modified version of the reward function
developed in [13]. At each time-step ¢, the agent receives a reward r;, computed by iterating
over all vehicles currently in the agent’s observation space, and summing different penalties:

N N N
re=—15c—02Y € —03) d;i—03) w
i=1 i=1 i=1

This, where i represents the vehicle index. ¢ is a penalty for switching the light configuration,
to prevent flickering. e; is a penalty for sharp decelerations, to penalize emergency stops. d;
is a penalty for the ’delay’ of a vehicle, defined as 1 — %. Finally, w; is a waiting
penalty, defined as 0.5 for the first step of a car standing still, and 1 for any consecutive
step.

The modification included removal of a term that punishes teleportation of vehicles
(used in SUMO to mark traffic collisions) due to implementation challenges. Additionally,
the coefficient of the term ¢ was increased from 0.1 to 1.5, after observation that otherwise

the penalty for light switching is barely noticeable with almost any number of cars.
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4 Experimental Setup

This section first describes and motivates the methodology used to evaluate the exploration
approaches in the setting of traffic light control. This is followed by a description of the three
traffic scenarios used to evaluate the exploration approaches.

4.1 Comparison of different exploration methods

To evaluate the impact of exploration in the setting of traffic light control, this paper
compares the performance of agents using e-greedy, BDQN [12], randomized prior functions
[11] and a combination of the above for exploration, in three different scenarios. The performance
is evaluated and averaged over multiple repetitions.

The compared agents As all three exploration approaches investigated are designed to
be combined, the performance of the following six agents is compared: a regular DQN agent
ad regular DQN agent with a randomized prior function, both employing e-greedy; Two
BDQN agents with increasing bootstrap size: 4 & 10 bootstrap samples (or neural network
‘heads’); Last, two similar BDQN agents, combining randomized prior functions in their
bootstrap mechanism. The number of bootstrap samples has been chosen based on a relation
between computational complexity (the larger the bootstrap, the larger the complexity), and
gain from the bootstrap (the larger the bootstrap, the better the average performance). As
shown empirically in [12], the relative gain from sizes larger than 10 becomes insignificant
very quickly. The experimentation with different combinations of those techniques allows to
evaluate, in essence, even more exploration techniques, and is the reason it is done in this
paper.

The parameters of the agents investigated are not tuned for the specific setting of traffic
light control. For the purpose of full reproducibility, a full list of the experiment parameters
and agents’ hyper-parameters used is available with the code base used in the experiments.

The evaluation The evaluation is done as follows: an experiment is done, for each agent
in each scenario and each intersection considered. Each experiment consists of N learning
episodes. Every evaluation frequency learning episodes, an evaluation phase is ran. In
order to reduce sensitivity to stochastic noise from the random nature of the traffic used in
the experiments, in the evaluation phase the agent’s policy is evaluated over number _evaluations
evaluation episodes, with € = 0. The average episodic reward is then used for evaluation. The
exact parameters evaluation _ frequency, number _evaluations used in each experiment are
detailed in section 5. To further reduce the impact of stochasticity, the entire experiment is
repeated X times for each agent and the results averaged. Finally, the performances of the
different agents are plotted against each other, in the form of their averaged evaluations’
rewards. The results are presented in section 5.

The different parameters mentioned above were chosen in the following way: N was
chosen from experimentation, as the range within which the agents’ learning starts to
plateau, in order to present the differences between the evaluations of the agents’ in the
clearest way. The evaluation _frequency used for each experiment set is chosen to achieve
balance between the number of episodes each experiment is ran for, and the number of total
evaluation episodes in the experiment. The number evaluations parameter has been chosen
as a balance between the total number of evaluation phases and the total number of episodes



8 Y. Oren, R. A. N. Starre & F. A. Olichoek

in each experiment. The larger the number of learning episodes, and lower the evaluation
frequency, the larger the number evaluations parameter. To balance computational costs
and time constraints with reliability of results, each experiment was chosen to be averaged
over X = 25 repetitions.

For the purpose of full reproducibility, all random generators used are fully seeded, and
the seeds logged. Each experiment is initiated with a different random seed, to guarantee
random initialization of the agents’ neural networks’ weights. The environment’s traffic
generator however is seeded with the same set of seeds for all experiments. This is done
to guarantee that while all agents experimented with are different, they are tested against
the same traffic simulations.

4.2 The traffic scenarios

The impact of the exploration approaches investigated in this paper is evaluated using the
traffic simulator SUMO [9], in three different traffic scenarios. In the first scenario, one set
of experiments is done. In the second and third scenarios, two separate experiment sets are
done, evaluating the agent against traffic of slower and faster average speed.

Scenario 1: The grid The first scenario is a basic grid-like road network, with one
intersection in the center, and four roads going one in each direction from the intersection:
north, east, south and west. A visualization of the grid scenario is presented in figure 2 a.
The first scenario is meant to capture a simple, independent intersection profile, that does
not consider or experience the behavior of other neighboring intersections. The traffic in this
scenario is generated randomly, based on a set number of vehicles over a set spawning time.

Scenario 2: Simulation of real traffic in Manhattan, New York The second scenario,
visualized in figure 2 b, is based on a section of the road map of Manhattan, New York, and
is a more complex network containing several interconnected intersections. The specific road
map used in our experiments is a 700 m? section centered around the corner of Waring and
Woodhull Avenues. The map has been imported using SUMO’s web-wizard. This scenario
means to evaluate the effect of efficient exploration in a more complex traffic profile, where
the agent may observe and consider the behavior of neighboring intersections. Manhattan
enjoys a grid road-map design, that for the purpose of this work serves as both realistic and
practical to use.

The red squares marked in figure 2 point to the two intersections given to the agent to
control, as two separate experiments sets in this scenario. These intersections were chosen
due to their encapsulation of different traffic profiles. The top intersection, Waring-Woodhull,
presents a gentler form of traffic with significantly lower vehicle speed average. The bottom
intersection, Eastchester-Waring, experiences much higher average vehicle speed, and more
strongly resembles a central road. The throughput of both intersections is rather similar,
with a slightly heavier load going through Eastchester-Waring. In every experiment, all
intersections in the network except the one controlled by the agent are controlled by SUMO.
To generate traffic for the Manhattan scenario, a random routes generator is used, based on
real population distributions in the area, for the time of day 08:30 AM to 09:00 AM. The
traffic data is imported using SUMQO’s web-wizard as well.



Exploration in Deep Reinforcement Learning for Traffic Control 9

Scenario 3: Simulation of custom traffic in Manhattan, New York A third scenario
is introduced in order to evaluate exploration under heavier traffic settings. This scenario
uses the same map, and experiments with the same intersections illustrated in figure 2 b.
However, in this scenario a random traffic generator is used for traffic generation, in order to
introduce much heavier traffic loads than the ones generated to simulate real traffic. Again,
two different sets of experiments are done in this scenario, one on each of the two marked
intersections in figure 2 b. The difference of the traffic profiles between the two intersections
is similar to the one in the second scenario: the top intersection enjoys slower average speed,
and the bottom faster.

(a) The basic grid map. (b) The Manhattan
map. The top red box
marks the intersection
Waring-Woodhull,
and the bottom
the intersection
Eastchester-Waring.

Fig. 2: The road maps used in the traffic scenarios.

Observation space specification An important difference between the scenarios is the
observation space provided to the agent in each one. The observation space provided in the
experiments done with the grid scenario and the Eastchester-Waring intersection in either
scenario, was 50m?. This is done because in all three a larger observation space would be
outside the bounds of the environment. Due to the structure of the scenario, it was possible
to provide the agent with a larger observation space in the experiments done with the
Waring-Woodhull intersection in either scenario. An observation space of 84 m? was chosen,
to balance complexity (the larger the observation, the more complex the learning) with
observation distance. This is done to allow the agent access to more information, which (1)
contains the adjacent intersections, enabling the agent to take their behavior into account,
and (2) providing the agent with the ability to react to incoming traffic earlier, as a result
of the larger observation space.

5 Results

This section presents and analyzes the results obtained in the experiments described in
section 4, divided between the different scenarios investigated and intersections controlled.
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For each set of experiments, the results presented are the episodic rewards attained in
the evaluations, as described in section 4.1. This is presented alongside a plot of the 95%
confidence interval of the mean, computed using the standard error of the mean (SEM) [2] of
the different experiments for two sample agents. These agents are chosen independently for
each experiment: the one that performed, on average, the best, and the one that performed
the worst. This is done to illustrate how significant are the differences observed between
the evaluations of the different agents in each experiment. Only two agents are presented
in order to reduce clatter in the plot. A simple moving average (SMA) of window size 5 is
applied to the data presented in order to smoothen the stochastic effect, to facilitate visual
analysis of the results.

5.1 Scenario 1: The grid

The results of evaluating the performance of six different agents against the grid scenario
can be found in figure 3. The agents’ policies are evaluated every five learning episodes, and
averaged over three evaluation episodes. Additionally, the 95% confidence intervals of the
means of the two sample agents are presented.
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Fig. 3: Evaluating the agents against the grid scenario. The left figure presents the evaluations.
The number describes the size of the bootstrap sample (number of heads), and the p whether a
randomized prior has been incorporated. The right figure presents the same for two chosen agents,
including the 95% confidence interval of the mean.

Figure 3 illustrates that while all agents learn, the agents that appear to have the sharpest
learning rates are the regular DQN with and without prior function applied. However, as
can be seen in the right plot in figure 3, there is some overlap in the confidence intervals of
their means.

5.2 Scenario 2: Simulation of real traffic in Manhattan, New York

The results of evaluating the agents against the Manhattan scenario simulating real traffic
can be found below, separately for each set of experiments, controlling each of the two
intersections marked in figure 2 b. The agents’ policies are evaluated every training episode,
over two evaluation episodes, and averaged.

Traffic of low average speed Figure 4 presents the results of experimenting control of
the intersection Waring-Woodhull, the top of the two intersections in figure 2 b, capturing
a traffic profile of slower average speed.



Exploration in Deep Reinforcement Learning for Traffic Control 11

As observable, the difference between the evaluation scores in relation to the confidence
interval of the means, is mostly negligible, with the exception that the regular DQN achieves
inferior scores prior to episode 20. However, these scores are still well within the confidence
interval of the means of the other agent’s, and thus cannot be considered significant. This
behavior is attributed to the simplicity of the traffic profile, in relation to the amount
of information accessible to the agent in this scenario. As mentioned in section 4.2, the
observation space of the agents in this experiment is 84 m?. While the scenario can be
viewed as complex (several interconnected intersections, whose behaviors directly influence
each other’s traffic), which can translate to the learning process being more difficulty, the
volume of the traffic, including the average speed, is rather low, and thus the policy required
is not complex.
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Fig. 4: Evaluating the different agents against the Waring-Woodhull intersection, simulating real
traffic. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.

Traffic of high average speed Figure 5 presents the results of experiments done controlling
the second intersection, Eastchester-Waring. Eastchester-Waring enjoys both traffic of higher
average speed, as well as higher traffic loads. No significant difference in the performance
of the different agents is observed. This is further illustrated with the confidence interval of
the means presented in figure 5 and their overlap.
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Fig. 5: Evaluating the different agents against the Eastchester-Waring intersection, simulating real
traffic. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.
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5.3 Scenario 3: Simulation of custom traffic in Manhattan, New York

The results of evaluating the agents against the Manhattan scenario simulating random,
heavy traffic can be found below. The agents’ policies are evaluated every second training
episodes, and averaged over two evaluation episodes.

Traffic of low average speed The results for the intersection Waring Woodhull are
presented in figure 6. While the differences in the learning between most of the different
agents appears negligible, all of them appear to outperform the regular DQN agent. However,
as illustrated by the right plot in figure 6, the confidence intervals still have some overlap.
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Fig. 6: Evaluating the different agents against the Waring-Woodhull intersection in the custom
scenario. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.

Traffic of high average speed The results of experimenting control over the intersection
Eastchester Waring are presented in figure 7. No significant difference is observed between
the evaluations of the different agents. This is illustrated strongly by the confidence intervals,
and their overlap, presented in the right plot in figure 7.
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Fig. 7: Evaluating the different agents against the Eastchester-Waring intersection in the custom
scenario. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.
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5.4 Analysis

Many different factors can influence the results obtained by the different agents, ranging from
the reward function, the size of the observation space and its resolution, the state abstraction,
the complexity of the traffic scenario and sheer stochasticity. The type and complexity of
the traffic scenario, along with the observation space, are the main parameters that will be
considered in this analysis.

Here, the complexity of the scenario, while not defined exactly, considers the volume
and variety in the traffic and the number of surrounding interconnected intersections. In
particular, the "grid" scenario can be viewed as having lower complexity, as it has a medium
traffic volume, of low speeds and no neighbouring intersections. In the experiments done
in the scenario simulating real traffic, both intersections could be viewed as having higher
complexity: "Waring Woodhull", which is surrounded by a number of neighbouring intersections,
with lower traffic volume and a slower speed; and Eastchester-Waring, which is surrounded
by a similar number of neighbouring intersections, with somewhat higher traffic volume
with significantly higher average speed. Last, the scenario simulating custom traffic could be
viewed as having higher complexity as well, as it has similar parameters to the simulation
of real traffic, with the exception of significantly increased traffic loads. In addition, it is
worth mentioning that in the experiments done with the Waring Woodhull intersection the
observation space was larger than in any of the other experiments, as specified in section
4.2.

It appears that when the complexity of the traffic is low along with a smaller observation
space (the grid scenario), the simpler agents converge much faster, and more stably, to a
highly evaluated policy. However, when the agent is given sufficient information of sufficient
complexity (the Waring Woodhull intersection in both scenarios), deep exploration approaches
are able to outperform the e-greedy approach, by achieving faster learning. This may imply
that advanced exploration approaches may play a significantly more critical role in much
more sophisticated scenarios, such as an intersection balancing many lanes, experiencing
many different traffic profiles, and provided a large observation space. The differences observed
were generally small and within a 95% confidence interval of the means however, and as such,
the strength of this implication is limited.

We note, though, that for the Eastchester-Waring intersection no improvements due to
more sophisticated exploration were observed, even though the traffic patterns are more
complex here than in the simple grid. The reason for this could be that as a result of the
faster traffic and the smaller observation space, along with sufficient complexity in the road
map and variety in the loads and directions of the traffic, the different costs and gains from
the different exploration approaches balanced out.

6 Discussion

The results obtained suggest a link between the complexity of the scenario, the information
accessible to the agent and the gain from deep exploration, as discussed in section 5.4.
However, the advanced exploration approaches investigated are expected to have significant
gain especially when utilized in environments with scarcity of significant positive rewards,
and abundance of smaller negative rewards [11],[12]. As a consequence, the reward function
used can almost directly dictate the gain from different exploration strategies. The reward
function used was not designed for any specific exploration approach. It is therefore plausible
that under a tailored reward function the gain from deep exploration would have been much
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higher. This can be especially relevant in the case of reward functions that are known for
promoting good policies, while hindering learning.

7 Conclusions and Future Work

This paper investigated the value of deep exploration in the setting of traffic light control, by
comparing agents using different exploration approaches in three different traffic scenarios
of rising complexity. Specifically, the state of the art approaches Bootstrapped DQN [12]
and randomized prior functions [11] were compared to a baseline e-greedy approach. This,
to facilitate better deep RL in traffic light control, by identifying the value of evolved
exploration approaches in this setting, such as higher sample efficiency or higher final policy
score.

The results presented in this paper suggest a link between the complexity of the traffic
scenario, the size of the observation space of the agent, and the gain from efficient exploration,
achieved with Bootstrapped DQN and randomized prior functions, under a specific parameters
configuration. Specifically, the more complex the scenario and the larger the observation
space, the more significant the gain observed from efficient exploration.

The results presented leave the following open questions, however. What is the exact
relation between the gain from efficient exploration and the complexity of the scenario?
How sensitive is this relation to specific parameter configurations, and specifically under
parameters optimized for the specific setting? Does this conclusion apply for other exploration
approaches? These questions are left for future work.
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