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Contemporary computer vision frequently draws on convolutional neural net-
works (CNN). State-of-the-art performance is often achieved by further deepen-
ing previous architectures, but this increases computational costs and compli-
cates the mapping of artificial layers to cortical areas in computational neuro-
science, where these networks are used as models for goal-driven research. An
alternative direction of multidisciplinary relevance is thus the search for struc-
tural and algorithmic improvements within or between layers to alleviate the
necessity of additional depth. Inspiration for this can be found in visual cortex.
Naturally, this also improves the network’s biological plausibility, rendering it
more useful for neuroscience.

In primary visual cortex, neurons project to subsequent visual areas but also
connect laterally, i.e. to neurons in the same area [3]. Here, we distinguish three
types of lateral interaction: Semantic lateral connections link neurons responding
to the same patch of the visual field but preferring different line orientations. This
type of connectivity typically follows a Mexican hat profile assumed to fine-tune
the neurons’ orientation selectivity [2]. Spatial lateral connectivity establishes
interactions between neurons of similar orientation selectivity responding to dif-
ferent patches of the visual field along the axis of their orientation, presumably
integrating and segmenting contours [3]. Complex cells receive input from phase
selective simple cells and merge them into phase invariant representations [1].
In CNNs neither semantic nor spatial lateral connections are explicitly modeled
and complex cells are only loosely captured by pooling.

We introduce a joint model of spatiosemantic lateral connectivity and an ex-
plicit model of complex cells to extend CNNs. Spatial and semantic lateral con-
nections enrich the first convolutional layer by transforming its activation map
with biologically inspired wavelets along both the spatial domain and the channel
domains. We avoid the necessity of explicitly incorporating temporal dynamics
resulting from recurrent interactions by assuming these dynamics to be linear.
This allows us to solve for their steady state which renders the lateral connectiv-
ity a single non-parametric feedforward operation. Phase invariant complex cells
are simulated by two independent cell populations sa and sb contributing their
activations to the layer’s representation individually, but additionally merging
into a third population of complex cells via a pairwise complex modulus non-
linearity c =

√
(sa + sb)2. Unlike fixed complex wavelets in [4], the kernels of

simple cells are learned autonomously. A full architecture of the adapted first
convolutional layer is given in Figure 1.
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Fig. 1. Convolutional layer architecture with added complex cell simulation and lateral
connections. sa and sb are two independent populations of neurons, realized as two
arrays of convolutional filters. Their input is the original image, whereas the final
output of the layer (z) constitutes the input to the second convolutional layer.

A qualitative analysis of the effects of our model of spatial lateral connec-
tivity reveals that it successfully integrates segmented contours along straight
lines. Experiments on object and texture classification showcase significant and
substantial performance improvements in small-scale CNNs using complex cell
simulations. Applied to texture classification, the combination of complex cells
and spatial lateral connections produces the best performance, but spatial lat-
eral connectivity on its own can already significantly improve a shallow network
on both tasks. A closer look at the convolutional kernels emerging in laterally
connected complex cells reveals their autonomously learned structure to be rem-
iniscent of primary visual cortex. In particular, learned kernels largely adopt the
orientation of their allocated spatial connectivity profiles and thus reinforce the
proclaimed utility [3] of facilitation along this axis. In conclusion, our results
demonstrate that introducing biologically inspired connectivity patterns into
CNNs benefits their performance despite not increasing the number of trainable
parameters. Improvements can be attributed to the integration and segmentation
of contours during early visual processing, as the artificial connectivity profiles
emulate those fulfilling these functions in the brain. In consequence, the intro-
duced layer augmentation may not only improve small-scale CNNs in computer
vision applications but also foster neuroscientific research relying on biologically
plausible, goal-driven models.
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