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Preface
In 2020, the 32nd edition of BNAIC—the annual Benelux Conference on Artificial Intelligence—is organized together
with the 29th edition of BeneLearn—the annual Belgian-Dutch Conference on Machine Learning—by the Leiden Institute
of Advanced Computer Science (LIACS) of Leiden University, under the auspices of the Benelux Association for Artificial
Intelligence (BNVKI).

The conference was scheduled to take place in Corpus, Leiden, but due to the corona virus pandemic and limitations on the
organization of events, the conference was organized fully online, for the first time in its history. It took place on Thursday,
November 19 and Friday, November 20, 2020. The conference included keynotes by invited speakers, so-called FACt talks,
research presentations, a social programme, and a “society and business” afternoon.

The three keynote speakers at the conference were:

• Joost Batenburg, Leiden University
Challenges in real-time 3D imaging, and how machine learning comes to the rescue

• Gabriele Gramelsberger, RWTH Aachen University
Machine learning-based research strategies — A game changer for science?

• Tom Schaul, Google DeepMind, London
The allure and the challenges of deep reinforcement learning

Three FACt talks (FACulty focusing on the FACts of Artificial Intelligence) were scheduled:

• Luc De Raedt, Katholieke Universiteit Leuven
Neuro-Symbolic = Neural + Logical + Probabilistic

• Nico Roos, Maastricht University
We aren’t doing AI research

• Yingqian Zhang, Eindhoven University of Technology
AI for industrial decision-making

Authors were invited to submit papers on all aspects of Artificial Intelligence. This year we have received 83 submissions
in total. Of the 41 submitted Type A regular papers, both short and long, 24 (59%) were accepted for presentation. All
19 submitted Type B compressed contributions were accepted for presentation. From the Type C demonstrations, 2 out
of 3 were accepted. Of the submitted 20 Type D thesis abstracts, 17 were accepted for presentation. Together there are
38 accepted contributions from Type B, C and D. The selection was made based on a single-blind peer review process.
Each submission was assigned to three members of the program committee, and their expert reviews were the basis for our
decisions. We would like to thank all program committee members (listed on the previous pages) for their time and effort
to help us with this task.

All accepted submissions appear in these electronic proceedings, and are made available on the conference web site during
the conference. The 12 best accepted regular papers are invited to the postproceedings, to be published in the Springer
CCIS series after the conference.

We are grateful to our sponsors for their generous support of the conference:

• SIKS: Netherlands research school for Information and Knowledge Systems

• SNN Adaptive Intelligence: Dutch Foundation for Neural Networks

• BNVKI: Benelux Association for Artificial Intelligence

• SKBS: Stichting Knowledge Based Systems

• ZyLAB

• LIACS: Leiden Institute of Advanced Computer Science

Finally, we would like to thank all who contributed to the success of BNAIC/BeneLearn 2020.

Lu Cao, Walter Kosters and Jefrey Lijffijt
Program Chairs
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Evaluating the Robustness of Question-Answering
Models to Paraphrased Questions

Paulo Alting von Geusau[0000−0002−3189−4380] and
Peter Bloem[0000−0002−0189−5817]

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands
p.geusau@gmail.com
vu@peterbloem.nl

Abstract. Understanding questions expressed in natural language is a funda-
mental challenge studied under different applications such as question answering
(QA). We explore whether recent state-of-the-art models are capable of recognis-
ing two paraphrased questions using unsupervised learning. Firstly, we test QA
models’ performance on an existing paraphrased dataset (Dev-Para). Secondly,
we create a new annotated paraphrased evaluation set (Para-SQuAD) containing
multiple paraphrased question pairs from the SQuAD dataset. We describe quali-
tative investigations on these models and how they present paraphrased questions
in continuous space. The results demonstrate that the paraphrased dataset con-
fuses the QA models and leads to a decrease in their performance. Visualizing
the sentence embeddings of Para-SQuAD by the QA models suggests that all
models, except BERT, struggle to recognise paraphrased questions effectively.

Keywords: natural language · transformers · question answering · embeddings.

1 Introduction

Question answering (QA) is a challenging research topic. Small variations in semanti-
cally similar questions may confuse the QA models and result in giving different an-
swers. For example, the questions “Who founded IBM?” and “Who created the com-
pany IBM?” should be recognised as having the same meaning by a QA model. QA
models need to understand the meaning behind the words and their relationships. Those
words can be ambiguous, implicit, and highly contextual.

The motivation for writing this paper springs from the observation that QA models
can provide a wrong answer to a question that is phrased slightly different compared to
a previous question. Despite the questions being semantically similar. This sensitivity to
question paraphrases needs to be improved to provide more robust QA models. Modern
QA models need to recognise paraphrases effectively and provide the same answers to
paraphrased questions.

Despite the release of high-quality QA datasets, test sets are typically a random sub-
set of the whole dataset, following the same distribution as the development and training
sets. We need datasets to test the QA models’ ability to recognise paraphrased ques-
tions and analyse their performance. Therefore, we use two datasets, based on SQuAD

BNAIC/BeneLearn 2020 2



2 Paulo Alting von Geusau and Peter Bloem

(Rajpurkar et al., 2016), to conduct two separate experiments on BERT (Devlin et al.,
2018), GPT-2 (Radford et al., 2019) and XLNet (Zhilin Yang et al., 2019).

The first dataset we use is an existing paraphrased test set (Dev-Para). Dev-Para is
publicly available, and we use it to evaluate the models’ over-sensitivity to paraphrased
questions.1 Dev-Para is created from SQuAD development questions and consists of
newly generated paraphrases. Dev-Para evaluates the models’ performance on unseen
test data to gain a better indication of their generalisation ability. We hypothesise that
adding new paraphrases to the test set will result in the models suffering a drop in per-
formance. This paper will search for properties that the models learn in an unsupervised
way, as a side effect of the original data, setup, and training objective.

In addition, we introduce a new paraphrased evaluation set (Para-SQuAD) to test
the QA models’ ability in recognising the semantics of a question in an unsupervised
manner. Para-SQuAD is a subset of the SQuAD development set, whereas Dev-Para is
much larger and consists of newly added paraphrases. Para-SQuAD consists of question
pairs that are semantically similar but have a different syntactic structure. The question
pairs are manually annotated and picked from the SQuAD development set. We analyse
all sentence embeddings of Para-SQuAD in an embedding space with the help of t-
SNE visualisation. For each model, we calculate the average cosine similarity of all
question pairs to gain an understanding of the semantic similarity between paraphrased
questions.

The contributions of this paper are threefold:

1. We test the QA models’ performance on an existing paraphrased test set (Dev-Para)
to evaluate their robustness to question paraphrases.

2. We create a new paraphrased evaluation set (Para-SQuAD) that consists of question
pairs from the original SQuAD development set, the question pairs are semantically
similar but have a different syntactic structure.

3. We create and visualize useful sentence embeddings of Para-SQuAD by the QA
models, and calculate the average cosine similarity between the sentence embed-
dings for each QA model.

2 Methodology

In this section, we describe the models and sentence embeddings used, and we introduce
our method to create Para-SQuAD.

2.1 BERT, GPT-2 and XLNet

We use QA models that are based on the transformer architecture from Vaswani et al.
(2017). The models have been pre-trained on enormous corpora of unlabelled text, in-
cluding Books Corpus and Wikipedia, and only require task-specific fine-tuning. The
first model we use is Google’s BERT. BERT is bidirectional because its self-attention

1 https://github.com/nusnlp/paraphrasing-squad
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Evaluating the Robustness of Question-Answering Models to Paraphrased Questions 3

layer performs self-attention in both directions; each token in the sentence has self-
attention with all other tokens in the sentence. The model learns information from both
the left and right sides during the training phase. BERT’s input is a sequence of pro-
vided tokens, and the output is a sequence of generated vectors. These output vec-
tors are referred to as ‘context embeddings’ since they contain information about the
context of the tokens. BERT uses a stack of transformer encoder blocks and has two
self-supervised training objectives: masked language modelling and next-sentence pre-
diction.

The second model used in this paper is OpenAI’s GPT-2. GPT-2 is also a trans-
former model and has a similar architecture to BERT; however, it only handles context
on the left and uses masked self-attention. GPT-2 is built using transformer decoder
blocks and was trained to predict the next word. The model is auto-regressive, just like
Google’s XLNet.

XLNet, the third model used in this paper has an alternative technique that brings
back the merits of auto-regression while still incorporating the context on both sides.
XLNet uses the Transformer-XL as its base architecture. The Transformer-XL extends
the transformer architecture by adding recurrence at a segment level. XLNet already
achieves impressive results for numerous supervised tasks; however, it is unknown if
the model generates useful embeddings for unsupervised tasks. We explore this question
further in this paper.

We use the small GPT-2, BERT-Base, and XLNet-Base, all consisting of 12 layers.
The larger versions of BERT and XLNet have 24 layers; the larger version of GPT-2
has 36 layers.

2.2 Embeddings

Classic word embeddings are static and word-level; this means that each word receives
exactly one pre-computed embedding. Embedding is a method that produces continu-
ous vectors for given discrete variables. Word embeddings have demonstrated to im-
prove various NLP tasks, such as question answering (J. Howard and S. Ruder., 2018).
These traditional word embedding methods have several limitations in modelling the
contextual awareness effectively. Firstly, they cannot handle polysemy. Secondly, they
are unable to grasp a real understanding of a word based on its surrounding context.

Advances in unsupervised pre-training techniques, together with large amounts of
data, have improved contextual awareness of models such as BERT, GPT-2, and XL-
Net. Contextually aware embeddings are embeddings that not only contain information
about the represented word, but also information about the surrounding words. The
state-of-the-art transformer models create embeddings that depend on the surrounding
context instead of an embedding for a single word.

Sentence embeddings are different from word embeddings in that they provide em-
beddings for the entire sentence. We aim to extract the numerical representation of a
question to encapsulate its meaning. Semantically meaningful means that semantically
similar sentences are clustered with each other in vector space.

The network structures of the transformer models compute no independent sentence
embeddings. Therefore, we modify and adapt the transformer networks to obtain sen-
tence embeddings that are semantically meaningful and used for visualization. We use

BNAIC/BeneLearn 2020 4



4 Paulo Alting von Geusau and Peter Bloem

The Broncos took an early lead in Super Bowl 50 and never
trailed. Newton was limited by Denver’s defense, which
sacked him seven times and forced him into three turnovers,
including a fumble which they recovered for a touchdown.
Denver linebacker Von Miller was named Super Bowl MVP,
recording five solo tackles, 2½ sacks, and two forced fum-
bles.

Who was the Super Bowl 50 MVP?

Ground Truth Answers: Von Miller, Miller

Fig. 1. Example of SQuAD 1.1 development set with context, question, and answers.

QA models that are deep unsupervised language representations. All QA models are
pre-trained with unlabelled data.

Feeding individual sentences to the models will result in fixed-size sentence embed-
dings. A conventional approach to retrieve a fixed size sentence embedding is to average
the output layer, also called mean pooling. Another common approach for models like
BERT and XLNet is to use the first token (the [CLS] token). In this paper, we use the
mean pooling technique to retrieve the fixed-size sentence embeddings.

2.3 SQuAD

To create Para-SQuAD, we use the Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016), which consists of over 100.000 natural question and answer
sets retrieved from over 500 Wikipedia articles by crowd-workers. The SQuAD dataset
is widely used as a popular benchmark for QA models. The QA models take a question
and context as input to predict the correct answer. The two metrics used for evaluation
are the exact match (EM) and the F1 score. The SQuAD dataset is a closed dataset; this
means that the answer to a question exists in the context. Figure 1 illustrates an example
from the SQuAD development set.

SQuAD treats the task of question answering as a reading comprehension task
where the question refers to a Wikipedia paragraph. The answer to a question has to
be a span of the presented context; therefore, the starting token and ending token of the
substring is calculated.

2.4 Para-SQuAD

To evaluate the robustness of the models on recognising paraphrased questions, we
create a new dataset called Para-SQuAD, using the SQuAD 1.1 development set. The
SQuAD development set uses at least two additional answers for each question to make
the evaluation more reliable. The human performance score on the SQuAD develop-
ment set is 80.3% for the exact match, and 90.5% for F1.2

The first author manually analysed all the questions inside the SQuAD develop-
ment set to acquire all paraphrased question pairs used in Para-SQuAD. Humans have

2 https://rajpurkar.github.io/SQuAD-explorer/
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a consistent intuition for “good” paraphrases in general (Liu et al., 2010). To be spe-
cific, we consider questions as paraphrases if they yield the same answer and have the
same intention. The main criteria for well-written paraphrases are fluency and lexical
dissimilarity. Moreover, word substitution is sufficient to count as a paraphrase.

Questions in the SQuAD development set relate to specific Wikipedia paragraphs
and are grouped together. We manually select paraphrased question pairs that already
exist in the SQuAD development set without creating new questions. This method en-
sures that Para-SQuAD is a typical subset of the SQuAD development set without in-
ducing dataset bias. Moreover, the data distribution and dataset bias in Para-SQuAD and
the SQuAD development set remains identical. Para-SQuAD consists of 700 questions,
350 paraphrased question pairs, and 12 different topic categories.

After paraphrase collection, we performed post-processing to check for any mis-
takes. The paraphrased questions are checked on English fluency using context-free
grammar concepts.3 We used spaCy4 to conduct a sanity check after manually collect-
ing all paraphrased questions. SpaCy provides paraphrase similarity scores of the ques-
tion pairs. SpaCy is an industrial-strength natural language processing tool and receives
sentence similarity scores by using word embedding vectors.

Using Para-SQuAD for visualisation has a significant advantage compared to using
Dev-Para. Namely, the data distribution of Dev-Para changes after the addition of new
sentences. On the contrary, the data distribution of Para-SQuAD remains the same be-
cause we do not add new sentences; we only annotate the existing paraphrases in the
SQuAD development set.

2.5 Para-SQuAD Sentence Embeddings

We present a proof-of-concept visualization of the models’ capability to represent se-
mantically similar sentences closely in vector space. Previous research by Coenen et
al. (2019) reveals that much of the semantic information, of BERT and related trans-
former models, is visible and encoded in a low-dimensional space. Therefore, we map
all the paraphrased questions from Para-SQuAD to a sentence embedding space for
every pre-trained model. Distance in the vector space can be interpreted roughly as
sentence similarity according to the model in question.

We calculate the fixed-length vectors for each question using the Flair framework,5

with mean pooling, to receive the final token representation. Mean pooling uses the
average of all word embeddings to obtain an embedding for the whole sentence.

All transformer models produce 768-dimensional vectors for every question, and
t-SNE (Laurens van der Maaten and Geoffrey Hinton, 2008) is applied to transform the
high-dimensional space to a low-dimensional space in a local and non-linear way. The
dimensionality is first reduced to 50 using Principal Component Analysis (PCA) (Karl
Pearson, 1901) to ensure scalability, before feeding into t-SNE.

We use a perplexity of 50 for all models, after tuning the ‘perplexity’ parameter, to
capture the clusters. Perplexity deals with the balance between global and local aspects

3 https://www.nltk.org/
4 https://spacy.io/
5 https://github.com/flairNLP/flair
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6 Paulo Alting von Geusau and Peter Bloem

of the data. We tested diverse perplexity values to ensure robustness. We also explore
the traditional word-based model GloVe (Pennington et al., 2014) and compare its sen-
tence embeddings to the state-of-the-art transformer models. We investigate if GloVe
captures the nuances of the meaning of sentences more effectively as compared to the
transformer models.

3 Results

In this section, we evaluate the two experiments. The first experiment measures the
performance of the QA models on Dev-Para. The second experiment visualises the
sentence embeddings of Para-SQuAD for each QA model.

3.1 Experiments on QA Models

We conduct experiments on three pre-trained models: BERT, GPT-2, and XLNet. The
training code of the models is based on the Hugging Face implementation, which is
publicly available.6 In addition to using the pre-trained models directly, we fine-tuned
the models on the SQuAD 1.1 training set. We first measure the performance of the pre-
trained models on Dev-Para. Secondly, we use the three pre-trained models and GloVe
to visualize the sentence embeddings of Para-SQuAD in an embeddings space. Both
experiments are performed in an unsupervised manner.

3.2 Dev-Para Performance

We illustrate the performance of all three pre-trained QA models on Dev-Para. Dev-
Para consists of the original set and the paraphrased set. The original set contains more
than 1.000 questions from the SQuAD development set; the paraphrased set contains
between 2 and 3 generated paraphrased questions for each question from the original
set (Wee Chung Gan and Hwee Tou Ng, 2019).

The QA models’ performance on Dev-Para is presented in Table 1. Although the
original set of Dev-Para is semantically similar to the paraphrased set, we see a drop in
performance of all three models. Especially GPT-2 and XLNet are suffering a signifi-
cant drop in performance.

Model EM Score F1 Score
Original Paraphrased Original Paraphrased

BERT 82.2 78.7 89.2 86.2
GPT-2 71.6 62.9 80.4 72.7
XLNet 89.4 82.6 93.7 85.3

Table 1. Performance of the QA models on Dev-Para.

6 https://github.com/huggingface/transformers
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The drop in performance is unexpected since the meaning of the questions did not
change between the original set and the paraphrased set of Dev-Para. One possible
explanation is that the model is exploiting surface details in the original set that are not
reproduced by the protocol used to create Dev-Para. If true, this demonstrates a lack of
robustness in the models. Moreover, the added questions could be more complicated,
therefore allowing for more variability in the syntactic structure, and those questions
for which there are paraphrases are variants of more frequent questions.

3.3 Visualization Para-SQuAD

For the following continuous space exploration of Para-SQuAD, we focus on the BERT,
GPT-2, XLNet, and GloVe sentence embeddings. Each point in the space represents a
question; the 12 colours in Figure 2-5 represent the different categories. The lines in
Figure 6-9 illustrate the distance between the paraphrased question pairs. Figure 6-
9 all consist of the same amount of lines; however, some lines are difficult to see if
both paraphrased question pairs appear close to each other in the embedding space.
Paraphrased question pairs that represent the same location in the embedding space
appear as a single dot without lines. As a result, it seems that Figure 6 contains fewer
lines compared to figure 8, which is a false assumption.

Using visualization as a key evaluation method has important risks to consider. Rel-
ative sizes of clusters cannot be seen in a t-SNE plot as dense clusters are expanded,
and spare clusters are shrunk. Furthermore, distances between the separated clusters in
the t-SNE plot may mean nothing. Clumps of points in the t-SNE plot might be noise
coming from small perplexity values.

The visualization of Para-SQuAD consists of all 350 paraphrased question pairs.
We argue that the semantics of the questions occupy different locations in continuous
space. This hypothesis is tested qualitatively by manually analysing the t-SNE plots
of the models. As a sanity check, all sample points in the plots have been manually
analysed with the corresponding sentences to check for mistakes (e.g., wrong colour or
pairs).

We explore sample points within clusters to gain relevant insights. If two sample
points are far from each other in the plot, it does not necessarily imply that they are
far from each other in the embedding space. However, the number of long distances
between paraphrased question pairs, coming from different clusters, can reveal infor-
mation on the robustness of the models to recognise paraphrased question pairs and
their semantics.

Figure 2 illustrates that BERT creates clear and distinct clusters for every category;
we only observe a few errors. Most paraphrased questions are within the same cluster
and close to each other (Figure 6). Therefore, it seems that BERT can capture similar
semantic sentences effectively.

GPT-2 has trouble clustering the different categories (Figure 3). After manually
analysing the sentences in the different clusters, it seems that GPT-2 offers special at-
tention to the first tokens in the sentence. The paraphrased question pairs are close to
each other in vector space if they start with the same token. The starting token is often
the ‘question word’ in Para-SQuAD. It seems that GPT-2 organises questions by their
structure instead of their semantics.

BNAIC/BeneLearn 2020 8
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Fig. 2. BERT sentence embeddings.

Rhine
Economic_inequality
Civil_disobedience
Immune_system
Packet_switching
Ctenophora
Amazon_rainforest
European_Union_law
Oxygen
Nikola_Tesla
Super_Bowl_50
Warsaw

Fig. 3. GPT-2 sentence embeddings.

Fig. 4. XLNet sentence embeddings. Fig. 5. GloVe sentence embeddings.

Fig. 6. BERT sentence embeddings. Fig. 7. GPT-2 sentence embeddings.

Fig. 8. XLNet sentence embeddings. Fig. 9. GloVe sentence embeddings.
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XLNet forms one large cluster, with smaller clusters within (Figure 4). However,
these clusters are not that clear when compared to BERT. The different categories are
all spread out, and no apparent clusters are formed.

Figure 5 suggests that GloVe clusters the different categories more effectively than
GPT-2 and XLNet, despite using static embeddings. This finding is interesting, since
contextualised embedding are thought to be superior compared to traditional static em-
beddings. At the same time, the paraphrased questions that appear close to each other in
Figure 9 have similar words in the sentence and can be considered as easy paraphrases.
GloVe is unable to recognise more complex paraphrases, which can be explained by the
model’s architecture and not providing contextualised embeddings.

Model Average Cosine Similarity
BERT 0.875

BERT (fine-tuned) 0.939
GPT-2 0.987
XLNet 0.981

Table 2. Average cosine similarity of the QA models.

In this paper, we use the cosine similarity to measure the closeness between para-
phrased question pairs. For each model, we calculate the average cosine similarity for all
the paraphrased question pairs in Para-SQuAD to see if the fine-tuned models perform
better than the pre-trained models (Table 2). Calculating the average cosine similarity
was only relevant for comparing the pre-trained BERT and the fine-tuned BERT. The
cosine similarity of the fine-tuned BERT increased with 7.3%. The plots of the fine-
tuned models reveal no interesting findings; therefore, we only illustrate the sentence
embeddings of the basic pre-trained models.

The average cosine similarity of GPT-2, as illustrated in Table 2, is almost perfect.
However, after further investigating the cosine similarity between all paraphrased ques-
tion pairs, we notice that even two semantically dissimilar sentences have a high cosine
similarity. Therefore, this high average reveals extreme anisotropy in the last layers
of GPT-2; sentences occupying a tight space in the vector space. We also notice the
same effect in XLNet. We can, therefore, suggest that GPT-2 and XLNet are the most
context-specific models. This observation is in line with the work of Kawin Ethayarajh
(2019).

4 Related Work

Recent research on deep language models and transformer architectures (Vaswani et
al., 2017) has demonstrated that context embeddings in transformer models contain
sufficient information to perform various NLP tasks with simple classifiers, such as
question answering (Tenney et al., 2019; Peters et al., 2018). They suggest that these
models produce valuable representations of both syntactic and semantic information.

BNAIC/BeneLearn 2020 10
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Attention matrices can encode significant connections between words in a sentence, as
illustrated with qualitative and visualization-based work by Jesse Vig (2019). Multiple
tests to measure how effective word embeddings capture syntactic and semantic infor-
mation is defined in the work of Mikolov et al. (2013). Furthermore, the recent work of
Hewitt et al. (2019) analysed context embeddings for specific transformer models.

Sentence embeddings can be helpful in multiple ways, analogous to word embed-
dings. Common proposed methods are: InferSent (Conneau et al., 2017), Skip-Thought
(Kiros et al., 2015) and Universal Sentence Encoder (USE) (Cer et al., 2018). Hill et
al. (2016) prove that training sentence embeddings on a specific task, such as question
answering, impact their quality significantly.

Conneau et al. (2018) presented probing tasks to evaluate sentence embeddings in-
trinsically. Evaluation of sentence embeddings happens most often in ’transfer learning’
tasks, e.g., question type prediction tasks. The study measures to what degree linguistic
features, like word order or sentence length, are accessible in a sentence embedding.
This study was continued with SentEval (Alexis Conneau and Douwe Kiela, 2018),
which serves as a toolkit to evaluate the quality of sentence embeddings. This qual-
ity is measured both intrinsically and extrinsically. SentEval proves that no sentence
embedding technique is flawless across all tasks (Perone et al., 2018).

Recently, numerous QA datasets have been published (e.g., Rajpurkar et al., 2016;
Rajpurkar et al., 2018). However, defining a suitable QA task and developing method-
ologies for annotation and evolution is still challenging (Kwiatkowski et al., 2019). Key
issues include the metrics used for evaluation and the methods and sources used to
obtain the questions.

Our analysis focuses on three specific transformer models; however, there are nu-
merous transformer models available. Other notable transformer models are XLM (Lam-
ple et al., 2019) and ELECTRA (Clark et al., 2020). Recent papers have focused on
generalisability by evaluating different models on several datasets (Priyanka Sen and
Amir Saffari, 2020), but not for paraphrasing specifically.

5 Conclusion

This paper presents an initial exploration of how QA models handle paraphrased ques-
tions. We used two different datasets and performed tests on each dataset. Firstly, we
used an existing paraphrased test set (Dev-Para) to test the QA models’ robustness to
paraphrased questions. The results demonstrate that all three QA models drop in perfor-
mance when exposed to more unseen paraphrased questions. The drop in performance
could be explained by exposing the models to new paraphrased questions that devi-
ate from the original SQuAD questions. The experiments underline the importance of
improving QA models’ robustness to question paraphrasing to generalise effectively.
Moreover, increased robustness is necessary to increase the reliability and consistency
of the QA models when tested on unseen questions in real-life world applications.

Secondly, we constructed a paraphrased evaluation set (Para-SQuAD) based on
SQuAD to illustrate interesting insights into QA models handling paraphrased ques-
tions. The findings reveal that BERT creates the most promising and informative sen-
tence embeddings and seems to capture semantic information effectively. The other

BNAIC/BeneLearn 2020 11



Evaluating the Robustness of Question-Answering Models to Paraphrased Questions 11

models, however, seem to fail in recognising paraphrased question pairs effectively and
lack robustness.

5.1 Discussion

The models’ drop in performance on Dev-Para is unexpected. We hypothesise that the
original SQuAD training set does not consist of enough diverse question paraphrases.
This lack of variation leads to the QA models not learning to answer different questions,
that have the same intention and meaning, correctly. The QA models fail to recognise
some questions that convey the same meaning using different wording. Exposing the
QA models to more different question phrases would be a logical step to improve the
QA models’ robustness to question paraphrasing.

Generating paraphrases and recognizing paraphrases are still critical challenges
across multiple NLP tasks, including question answering and semantic parsing. A rel-
atively robust and diverse source for generating paraphrases is through neural machine
translation. We can make larger datasets consisting of paraphrased questions with the
help of machine translation: the question is translated into a foreign language and then
back-translated into English. This back-translation approach achieved remarkable re-
sults in diversity compared to paraphrases created by human experts (Federmann et al.,
2019).

5.2 Limitations

One limitation of the performed experiments is the small size of Para-SQuAD. Increas-
ing Para-SQuAD with data augmentation could be achieved with the use of neural
machine translation to generate more paraphrases. Increasing the size of Para-SQuAD
would lead to more reliable results, but we would lose the advantage of keeping the data
distribution intact.

Another downside is the simplicity of Para-SQuAD. The paraphrases used are rel-
atively simple and basic. Therefore, models achieving excellent results on the set does
not guarantee their robustness to question paraphrases.

In general, there is no inter-annotator agreement measure to ensure consistent anno-
tations because we only have one annotator. However, we consider this justified due to
the simple task of selecting paraphrased question pairs in the SQuAD development set.

Using visualization as the primary evaluation method has its risks. A common pitfall
includes pareidolia; to see structures and patterns that we would like to see. As an
example, we can see that BERT forms clear clusters that are known to us; however,
other models could form divergent cluster structures to represent patterns. We could,
therefore, easily overlook those cluster structures that are unfamiliar to us. Furthermore,
clusters can disappear in the t-SNE transformation.

Lastly, with the performed method, it is hard to distinguish whether BERT recog-
nizes the actual semantics of the questions or merely the Wikipedia extracts. Further
research is needed to investigate this distinction.
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Abstract. We propose a novel pruning method which uses the oscil-
lations around 0 (i.e. sign flips) that a weight has undergone during
training in order to determine its saliency. Our method can perform
pruning before the network has converged, requires little tuning effort
due to having good default values for its hyperparameters, and can di-
rectly target the level of sparsity desired by the user. Our experiments,
performed on a variety of object classification architectures, show that it
is competitive with existing methods and achieves state-of-the-art per-
formance for levels of sparsity of 99.6% and above for 2 out of 3 of the
architectures tested. For reproducibility, we release our code publicly at
https://github.com/AndreiXYZ/flipout.

Keywords: deep learning · network pruning · computer vision.

1 Introduction

The success of deep learning is motivated by competitive results on a wide range
of tasks ([3,9,24]). However, well-performing neural networks often come with the
drawback of a large number of parameters, which increases the computational
and memory requirements for training and inference. This poses a challenge
for deployment on embedded devices, which are often resource-constrained, as
well as for use in time sensitive applications, such as autonomous driving or
crowd monitoring. Moreover, costs and carbon dioxide emissions associated with
training these large networks have reached alarming rates ([21]). To this end,
pruning has been proven as an effective way of making neural networks run more
efficiently ([5,6,13,15,18]).

Early works ([6,13]) have focused on using the second-order derivative to
detect which weights to remove with minimal impact on performance. However,
these methods either require strong assumptions about the properties of the
Hessian, which are typically violated in practice, or are intractable to run on
modern neural networks due to the computations involved.

One could instead prune the weights whose optimum lies at or close to 0
anyway. Building on this idea, the authors of [5] propose training a network until
? Supported by BrainCreators B.V.
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convergence, pruning the weights whose magnitudes are below a set threshold,
and allowing the network to re-train, a process which can be repeated iteratively.
This method is improved on in [4], whereby the authors additionally reset the
remaining weights to their values at initialization after a pruning step. Yet, these
methods require re-training the network until convergence multiple times, which
can be a time consuming process.

Recent alternatives either rely on methods typically used for regularization
([17,18,26]) or introduce a learnable threshold, below which all weights are
pruned ([16]). All these methods, however, require extensive hyperparameter
tuning in order to obtain a favorable accuracy-sparsity trade-off. Moreover, the
final sparsity of the resulting network cannot be predicted given a particular
choice of these hyperparameters. These two issues often translate into the fact
that the practitioner has to run these methods multiple times when applying
them to novel tasks.

To summarize, we have seen that the pruning methods presented so far suffer
from one or more of the following problems: (1) computational intractability, (2)
having to train the network to convergence multiple times, (3) requiring extensive
hyperparameter tuning for optimal performance and (4) inability to target a
specific final sparsity.

We note that by using a heuristic in order to determine during training
whether a weight has a locally optimal value of low magnitude, pruning can be
performed before the network reaches convergence, unlike the method proposed
by the authors of [5]. We propose one such heuristic, coined the aim test, which
determines whether a value represents a local optimum for a weight by monitoring
the number of times that weight oscillates around it during training, while also
taking into account the distance between the two. We then show that this can be
applied to network pruning by applying this test at the value of 0 for all weights
simultaneously, and framing it as a saliency criterion. By design, our method is
tractable, allows the user to select a specific level of sparsity and can be applied
during training.

Our experiments, conducted on a variety of object classification architectures,
indicate that it is competitive with respect to relevant pruning methods from
literature, and can outperform them for sparsity levels of 99.6% and above.
Moreover, we empirically show that our method has default hyperparameter
settings which consistently generate near optimal results, easing the burden of
tuning.

2 Method

2.1 Motivation

Mini-batch stochastic gradient descent ([2]) is the most commonly used optimiza-
tion method in machine learning. Given a mini-batch of B randomly sampled
training examples consisting of pairs of features and labels {(xb, yb)}Bb=1, a neural
network parameterised by a weight vector θ, a loss objective L(θ,x,y) and a
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Fig. 1: Over- and under-shooting illustrated. The vertical line splits the x-axis into
two regions relative to the (locally-)optimal value θ∗j . Overshooting corresponds
to when a weight gets updated such that its new value lies in the opposite region
(blue dot), while undershooting occurs when the updated value is closer to the
optimal value, but stays in the same region (green dot).

learning rate η, the update rule of stochastic gradient descent is as follows:

gt =
1

B

B∑

b=1

∇θtL(θt, xb, yb)

θt+1 ← θt − ηgt

Given a weight θtj , one could consider its possible values as being split into two
regions, with a locally optimal value θ∗j as the separation point. Depending on
the value of the gradient and the learning rate, the updated weight θt+1

j will lie
in one of the two regions. That is, it will either get closer to its optimal value
while remaining in the same region as before or it will be updated past it and
land in the opposite region. We term these two phenomena under- and over-
shooting, and provide an illustration in Fig. 1. Mathematically, they correspond
to η|gtj | < |θtj − θ∗j | and η|gtj | > |θtj − θ∗j |, respectively.

With the behavior of under- and over-shooting, one could construct a heuristic-
based test in order to evaluate whether a weight has a local optimum at a specific
point without needing the network to have reached convergence:

1. For a weight θj , a value of φj is chosen for which the test is conducted
2. Train the model regularly and record the occurrence of under- and over-

shooting around φj after each step of SGD
3. If the number of such occurrences exceeds a threshold κ, conclude that θj

has a local optimum at φj (i.e. θ∗j = φj)

We coin this method the aim test.
Previous works have demonstrated that neural networks can tolerate high

levels of sparsity with negligible deterioration in performance ([4,5,16,18]). It is
then reasonable to assume that for a large number of weights, there exist local
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(a) Deceitful observations of under-shooting.(b) Deceitful observations of over-shooting.

Fig. 2: In the plots above, the dotted vertical line represents the value at which
the aim test is conducted (i.e. a value we would like to determine as a local
optimum or not), while the red dot represents the value of a true local optimum.
When testing for a value which is not a locally optimal value φj 6= θ∗j , over-
or under-shooting around φj can be merely a side-effect of that weight getting
updated towards its true optimum θ∗j . These observations would then contribute
towards the aim test returning a false positive outcome, i.e. φj = θ∗j . Whether we
observe an over-shoot or an under-shoot in this case depends on the relationship
between φj and θ∗j . In (a), we have φj > θ∗j , where if the hypothesised and true
optimum are sufficiently far apart, we observe an under-shoot. Conversely, in (b),
we have φj < θ∗j and observe over-shooting.

optima at exactly 0, i.e. θ∗j = 0. One could then use the aim test to detect these
weights and prune them. Importantly, when using the aim test for φj = 0, the
two regions around the tested value are the set of negative and positive real
numbers, respectively. Checking for over-shooting then becomes equivalent to
testing whether the sign of θj has changed after a step of SGD, while under-
shooting can be detected when a weight has been updated to a smaller absolute
value and retained its sign, i.e. (|θt+1

j | < |θtj |) ∧ (sgn(θtj) = sgn(θt+1
j )).

However, under-shooting can be problematic; for instance, a weight could be
updated to a lower magnitude, while at the same time being far from 0. This can
happen when a weight is approaching a non-zero local optimum, an occurrence
which should not contribute towards a positive outcome of the aim test. By
positive outcome, we refer to determining that φj = 0 is indeed a local optimum
of θj . A similar problem can occur for over-shooting, where a weight receives
a large update that causes it to change its sign but not lie in the vicinity of
0. These scenarios, which we will refer to as deceitful shots going forward, are
illustrated in the general case, where φj can take any value, in Fig. 2a and Fig.
2b. Following, we make two observations which help circumvent this problem.

Firstly, one could reduce the impact of deceitful shots by also taking into
account the distance of the weight to the hypothesised local optimum, i.e. |θj−φj |,
when conducting the aim test. In other words, the number of occurrences of under-
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and over-shooting should be weighed inversely proportional to this quantity, even
if they would otherwise exceed κ.

Our second observation is that by ignoring updates which are not in the
vicinity of φj , the number of deceitful shots are reduced. In doing so, one could
also simplify the aim test; with a sufficiently large perturbation to θj , an update
that might otherwise cause under-shooting can be made to cause over-shooting.
Adding a perturbation of ±ε is, in effect, inducing a boundary around the tested
value, [φj − ε, φj + ε]; all weights that get updated such that they fall into that
boundary will be said to over-shoot around φj . With this framework, checking
for over-shooting is sufficient; updates that under-shoot and are within ε of the
tested value are made to over-shoot (Fig. 3a) and updates which under-shoot
but are not in the vicinity of φj , i.e. a deceitful shot, are now not recorded at all
(Fig. 3b). This can also be seen as restricting the aim test to only operate within
a vicinity around φj .

2.2 FlipOut: applying the aim test for pruning

Determining which weights to prune Pruning weights that have local
optima at or around 0 can obtain a high level of sparsity with minimal degradation
in accuracy. The authors of [5] use the magnitude of the weights once the network
is converged as a criterion; that is, the weights with the lowest absolute value
(i.e. closest to 0) get pruned. The aim test can be used to detect whether a point
represents a local optimum for a weight and can be applied before the network
reaches convergence, during training. For pruning, one could then apply the aim
test simultaneously for all weights with φ = 0 . We propose framing this as a
saliency score; at time step t, the saliency τ tj of a weight θtj is:

τ tj =
|θtj |p
flipstj

(1a)

flipstj =
t−1∑

i=0

[sgn(θij) 6= sgn(θi+1
j )] (1b)

With perturbation added into the weight vector, it is enough to check for over-
shooting, which is equivalent to counting the number of sign flips a weight has
undergone during the training process when φj = 0 (Eq. 1b); a scheme for adding
such perturbation is described in Section 2.2. In Equation 1a, the denominator
|θtj |p represents the proximity of the weight to the hypothesised local optimum,
|θtj −φj |p (which is equivalent to the weight’s magnitude since we have φj = 0 for
all weights). The hyperparameter p controls how much this quantity is weighted
relative to the number of sign flips.

When determining the amount of parameters to be pruned, we adopt the
strategy from [4], i.e. pruning a percentage of the remaining weights each time,
which allows us to target an exact level of sparsity. Given m, the number of times
pruning is performed, r the percentage of remaining weights which are removed
at each pruning step, k the total number of training steps, dθ the dimensionality
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(a) Under-shooting can become over-
shooting by adding perturbation.

(b) Ignoring deceitful shots.

Fig. 3: (a) All weights that under-shoot but are within ε of φj will be made to
over-shoot. (b) When testing at a value which is not a local optimum for θj ,
i.e. φj 6= θ∗j and adding a perturbation ε to θj , not taking under-shooting into
account means that if the weight gets updated such that it does not lie in the
boundary around φj induced by the perturbation, an event that would otherwise
contribute to a false positive outcome for the aim test will not be recorded, so
the likelihood of rejecting φj as an optimum increases.

of the weights and || · ||0 the L0-norm, the resulting sparsity s of the weight tensor
after training the network is simply:

s = 1− ||θ
k||0
dθ

= (1− r)m (2)

This final sparsity can then be determined by setting m and r appropriately.

Perturbation through gradient noise Adding gradient noise has been shown
to be effective for optimization ([19,25]) in that it can help lower the training
loss and reduce overfitting by encouraging an exploration in the parameter
space, thus effectively acting as a regularizer. While the benefits of this method
are helpful, our motivation for its usage stems from allowing the aim test to
be performed in a simpler manner; weights that get updated closer to 0 will
occasionally pass over the axis due to the injected noise, thus making checking
for over-shooting sufficient. We scale the variance of the noise distribution by
the L2 norm of the parameters θ, normalize it by the number of weights and
introduce a hyperparameter λ which scales the amount of noise added into the
gradients. For a layer l and dl its dimensionality, the gradient for the weights in
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that layer used by SGD for updates will be:

ĝt,l ← gt,l + λεt,l (3a)

εt,l ∼ N (0, σ2
t,l) (3b)

σ2
t,l =

‖θt,l‖22
dl

(3c)

As training is performed, it is desirable to reduce the amount of added noise
so that the network can successfully converge. Previous works use annealing
schedules by decaying the variance of the Gaussian distribution proportional
to the current time step. Under our proposed formulation, however, explicitly
using an annealing schema is not necessary. By pruning weights, the term in the
numerator in Eq. 3c decreases, while the denominator remains constant. This
ensures that annealing will be induced automatically through the pruning process,
and there is no need for manually constructing a schedule.

Pruning periodically throughout training according to the saliency score in
Eq. 1a in conjunction with adding gradient noise into the weights forms the
FlipOut pruning method.

3 Related work

3.1 Deep-R

In Deep-R ([1]), the authors split the weights of the neural network into two
matrices, the connection parameter θk and a constant sign sk with sk ∈ {−1,+1};
the final weights of the network are then defined as θ� s. The connections whose
θk is negative are inactive; whenever a connection changes its sign, it is turned
dormant and another randomly sampled connection is re-activated, ensuring the
same sparsity level is maintained throughout training. Gaussian noise is also
injected into the gradients during training.

Two similarities with our method can be observed here, namely the fact
that the authors also use sign flipping as a signal for pruning a weight, and the
addition of Gaussian noise. However, our methods differ in that we do not impose
a set level of sparsity throughout training; instead, we use the number of sign
flips of a weight in order to determine its saliency, while in Deep-R a single sign
flip is required for a weight to be removed. Our method of injecting noise into the
gradients also differs in that it does not explicitly encode an annealing scheme,
allowing for the pruning process itself to reduce the noise throughout training.
Finally, in Deep-R, the network is initialized with a specific level of sparsity
which is maintained throughout training, while our method prunes gradually.

3.2 Magnitude and uncertainty pruning

The M&U pruning criterion is proposed in [11]. Given a weight θj , its uncertainty
estimate σ̃θj and a parameter λ controlling the trade-off between magnitude and
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uncertainty, the M&U criterion will evaluate the saliency of the weight as:

τj =
|θj |

λ+ σ̃θj

Uncertainty is estimated as the standard deviation across the previous n values
of that weight, via a process called pseudo-bootstraping. This criterion is a
generalization of the Wald test, and is equivalent to it when λ = 0.

Our method is similar in that our saliency score also normalizes the weight’s
magnitude by a function of its past values. However, this method assumes
asymptotic normality. While this is the case when using negative log-likelihood or
an equivalent as the loss function, this property does not necessarily hold when
using modified variants of the SGD estimator, such as Adam ([10]) or RMSprop
([22]). In contrast, FlipOut is not derived from the Wald test and does not make
any assumptions about the weight distribution at convergence.

4 Experiments

4.1 General Setup

Baselines As baselines, we consider a slightly modified version of magnitude
pruning ([5]) (Global magnitude), due to the similarity between its saliency
criterion and that of our own method, SNIP ([14]) due to it being an easily
applicable method which does not suffer from any of the issues that are commonly
found in pruning methods (Section 1) and Hoyer-Square, as introduced in [26],
for the state-of-the-art results that it has demonstrated. We also include random
pruning (Random) as a control. For FlipOut, Global magnitude and Random,
pruning is performed periodically throughout training. We compare these methods
at five different compression ratios, chosen at regular log-intervals (Table 1); for
Hoyer-square, the performance at those points is estimated by a sparsity-accuracy
trade-off curve. Magnitude pruning, in its original formulation, performs pruning
only once the network has reached convergence. However, employing this strategy
can create a confounding variable: training time. Since we would like to compare
all methods at equal training budgets, we have opted to simply perform pruning
after a fixed number of epochs for these methods. Note that the training budget
that we allocate allows all of the networks that we consider to reach convergence
when trained without performing any pruning. We make an exception to this
equal budget rule for Hoyer-Square, since it prunes after training and would
otherwise not benefit from any SGD updates after sparsification. As such, we
have performed an additional 150 epochs of fine-tuning without the regularizer,
as per the original method, although we have observed negligible benefits to this.
All baselines were modified to rank the weights globally when a pruning decision
is made, as per the strategy from [4], in order to avoid creating bottleneck layers.
The models that we test on are ResNet18 ([7]) and VGG19 ([20]) trained on the
CIFAR-10 dataset ([12]), and DenseNet121 ([9]) trained on Imagenette ([8]).
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Table 1: Compression ratios, resulting sparsity levels and prune frequencies used in
the experiments, assuming 350 epochs of training and that 50% of the remaining
weights are removed at each step.

Compression ratio ( dθ
||θ||0 ) Resulting sparsity (1− ||θ||0

dθ
) Epochs before pruning

22 75% 117
24 93.75% 70
26 98.43% 50
28 99.61% 39
210 99.9% 32

Hyperparameters The training parameters for all experiments are taken from
[23]; specifically, we use a learning rate of 0.1, batch size of 128, 350 epochs of
training and a weight decay penalty of 5e− 4. The learning rate is decayed by
a factor of 10 at epochs 150 and 250. The networks are trained with the SGD
optimizer with a momentum value of 0.9 ([2]). For the methods that perform
iterative pruning (Global magnitude, Random, FlipOut), we remove 50% of the
remaining weights at each pruning step, with the pruning frequencies chosen
such that the compression ratios from Table 1 are achieved; we use the same
pruning rates and frequencies across all three methods. SNIP accepts a single
hyperparameter, namely the desired final sparsity, which we have chosen such
that it matches the aforementioned compression ratios. For Hoyer-Square, which
does not allow for a specific level of sparsity to be chosen and, instead, relies on
parameter tuning, we generate a sparsity-accuracy trade-off curve by using 15
different values for the regularization term, ranging from 1e− 7 to 6e− 3 with 3
values at each decimal point (e.g. 1e− 7, 3e− 7, 6e− 7, 1e− 6 etc.) and a fixed
pruning threshold of 1e− 4. Finally, for FlipOut, we use the values of p = 2 (Eq.
1) and λ = 1 (Eq. 3) for all experiments, a choice we motivate in Section 4.2.

4.2 Choosing the hyperparameters for FlipOut

We have experimented with different values of the two hyperparameters and
found that p = 2 (Eq. 1a) and λ = 1 (Eq. 3a) offer consistent, strong results for
all networks tested. In the following paragraphs, we detail the procedure used in
determining these values.

Choosing λ For λ, we have run all networks at 15 different values, ranging from
0.75 to 1.5 in increments of 0.05. The value of p = 2 was used. The networks are
evaluated on a validation set, created by removing a random subset of samples
from the training set. The size of the validation set was 10000 for CIFAR10 and
2000 for Imagenette. For our subsequent experiments, (Sections 4.3 and 4.4),
the networks have been trained on the full training set. As a metric, we have
used the accuracy of the networks at the end of training for the sparsity levels of
93.75% and 99.9%. We provide in Table 2 the accuracies generated by the optimal
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Table 2: Accuracies when using the best value of λ discovered by grid search and
the value of λ = 1 at two levels of sparsity. The parantheses indicate the gain
offered by the optimal parameter.

Acc. at sparsity 93.75% Acc. at sparsity 99.9%

Model λ∗ λ = 1 λ∗ λ = 1

ResNet18 94.58(+0.02) 94.56 83.75(+1.68) 82.07
VGG19 93.07(+0.11) 92.96 87.72(+0.48) 87.24
DenseNet121 89.75(+0.0) 89.75 73.5(+1.45) 72.05

Table 3: Table of results for different values of p at two levels of sparsity.

Acc. at sparsity 93.75% Acc. at sparsity 99.9%

Model p = 0 p = 1
2
p = 1 p = 2 p = 4 p = 0 p = 1

2
p = 1 p = 2 p = 4

ResNet18 93.71 88.39 94.18 94.26 94.11 72.69 77.08 79.83 82.07 83.15
VGG19 91.68 82.44 92.56 92.96 92.57 81.48 80.69 86.01 87.24 86.64
DenseNet121 10.35 77.40 88.9 89.75 88.86 10.35 10.35 70.85 72.05 60.55

value of λ, as discovered through this process, and the ones generated at λ = 1.
Notice that the differences are almost negligible at 93.75% sparsity. For the larger
sparsity level the disparity increases, although the default value still remains
within 2 percentage points of the optimum value for all networks considered. The
largest gap can be seen for ResNet18 and DenseNet121, at approximately 1.7
and 1.5 percentage points, respectively. Since there are only two out of six cases
in which optimizing λ has helped beyond a negligible amount, we have used the
value of 1 for this hyperparameter throughout our experiments.

Choosing p We perform similar experiments for p on five values, p ∈ {0, 12 , 1, 2, 4}.
Note that the value of p = 0 corresponds to the case when the magnitudes of the
weights are not taken into account; that is, the pruning decisions will be made
solely based on the number of sign flips. As can be seen in Table 3, the value
of p = 2 consistently outperforms all other tested values, with the exception of
ResNet18 at 99.9% sparsity, for which the value of p = 4 achieves better results
by approximately 1 percentage point. Another interesting observation is that
the values of 1, 2 and 4 tend to perform better than 0 and 1

2 ; we conjecture
that this is due to the fact that deceitful shots (Section 2.1) occur when not
taking into account the distance between the weight and its hypothesised local
optimum, which have a negative impact on the pruning decision. This can be
especially observed at the higher sparsity level and in the case of DenseNet121,
where pruning with p = 0 causes the network to not perform better than random
guessing. Given that the value of p = 2 is favored in 5 out of 6 cases, we have
decided to use it as a default value in our subsequent experiments.
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(a) ResNet18 on CIFAR10 (b) VGG19 on CIFAR10

(c) DenseNet121 on Imagenette

Fig. 4: Results of pruning ResNet18 and VGG19 on the CIFAR10 dataset. Each
point is averaged over 3 runs; error bars indicate standard deviation.

4.3 Comparison to baselines

The results for the three models tested are found in Figure 4. FlipOut obtains
state-of-the-art performance on ResNet18 and VGG19 for sparsity levels of 99.61%
and beyond. For the highest tested sparsity level, it outperforms the second-best
method by 1.9 and 4.5 percentage points, respectively (Fig. 4a, 4b). Notably,
when using FlipOut on VGG19 for this sparsity, the drop in accuracy compared
to the unpruned model is only 6.2 percentage points. At the same time, it remains
competitive with other baselines for lower degrees of sparsity, staying within a 1
percentage point difference compared to the best method and with a minimal
drop relative to the unpruned model. For DenseNet121, however, Hoyer-Square
dominates all other methods tested in most cases (Fig. 4c), with FlipOut as
second best for the highest sparsity level.

Interestingly, the simple criterion of magnitude pruning, when modified to rank
the weights globally instead of a layer-by-layer basis, is competitive with other,
more recent, baselines, and even obtains state-of-the-art results for moderate
levels of sparsity. However, at high levels of sparsity, which correspond to more
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frequent and implicitly earlier pruning steps (Table 1) there is a performance
degradation. This suggests that the magnitude of a weight by itself is not a good
measure of saliency when the network is far from reaching convergence. It is also
worth noting that SNIP collapses at high levels of sparsity, causing the network
to perform no better than random guessing. Upon inspecting these cases (not
shown for visibility) we noticed that at least one layer has been entirely pruned,
effectively blocking any signal from passing. Interestingly, this does not happen
for any of the other baselines (except for Random). We conjecture that this
collapse as well as the cases where SNIP performs worse than random pruning
(Fig. 4b) are a result of pruning at initialization; pruning too too early can cause
the saliency criterion to be inaccurate, but also impedes training in and of itself.

During our experiments, we empirically observed that Hoyer-Square requires
extensive hyperparameter tuning for optimal performance. Our method, however,
has strong default values and can also target the final sparsity directly, while
also not requiring additional epochs of fine-tuning. Finally, SNIP, the only other
baseline which does not suffer from any of the issues commonly found among
pruning methods (Section 1) compromises on performance for high levels of
sparsity, whereas FlipOut does not.

4.4 Is it just the noise?

The performance of FlipOut could simply be a result of the noise addition,
which is known to aid optimization ([19,25]). To investigate this, we perform
experiments with global magnitude as the pruning criterion in which we add
noise into the gradients using the recipe from Equation 3c and compare it to our
own method. Notably, the saliency criterion of these two methods differ only in
that FlipOut normalizes the magnitude by the number of sign flips (denominator
in Eq. 1a). The hyperparameters were kept at their default values of p = 2 for
FlipOut and λ = 1 for both methods. We also include runs of FlipOut where no
noise was added (i.e. λ = 0). These serve as a control, decoupling the two novel
components of our method: noise addition and scaling magnitudes by the number
of sign flips. The same pruning rates and frequency of pruning steps have been
used as before (Table 1). The results are illustrated in Fig. 5.

For sparsity levels up to 98.44%, adding gradient noise causes a slight deterio-
ration on performance, as can be seen by the fact that both global magnitude and
FlipOut with λ = 0 outperform their noisy counterparts. It can also be seen that
FlipOut with λ = 1 performs comparably to noisy global magnitude, indicating
that measuring saliency by sign flips does not benefit accuracy in these regimes
compared to using only the magnitude, and the performance gap between the
noisy and non-noisy methods is likely a result of noise addition. For sparsity
levels of 99.61% and above, however, the opposite is true. It seems that gradient
noise disproportionately benefits networks with a small number of remaining
parameters; we conjecture that this is due to the fact that the exploration in
parameter space induced by noise is more effective when that space is heavily
constrained. Focusing on the highest level of sparsity, FlipOut outperforms noisy
global magnitude on VGG19 (Fig. 5b) and DenseNet121 (Fig. 5c) by 1.2 and
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(a) ResNet18 on CIFAR10 (b) VGG19 on CIFAR10

(c) DenseNet121 on Imagenette

Fig. 5: Results of the ablation study on the noise. Each point is averaged over 3
runs. Global magnitude without adding noise is also shown for comparison.

8.2 percentage points, respectively, while being outperformed by 0.8 percentage
points on ResNet18 (Fig. 5a). The standard deviation of FlipOut at this point is
lower than for noisy global magnitude for all networks tested, making it more
robust to initial conditions and the noise sampling process. At this level, the
addition of gradient noise to FlipOut also shows performance boosts compared
to its non-noisy counterpart, namely 9.3 percentage points for ResNet18, 3.2 for
VGG19 and 3.7 for DenseNet121. The benefits caused by adding noise to global
magnitude as compared to adding it to FlipOut are similar for VGG19; however,
it is relatively small for ResNet18 at 2.6 percentage points and even causes a 2
percentage point drop in performance for DenseNet121.

Since FlipOut with λ = 1 outperforms noisy global magnitude in 2 out of 3
cases for the highest level of sparsity while maintaining similar performance in all
other cases as well as being less sensitive to the choice of seed, we conclude that
its results cannot be explained only by the addition of noise and is also caused
by the sign flips being taken into account when computing saliency.
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Additionally, we conjecture that occurrences of under-shooting are indeed
converted into over-shooting when adding gradient noise, allowing FlipOut to
more accurately compute saliencies. This is evidenced by the fact that gradient
noise addition benefits FlipOut more so than it does global magnitude, and
implies that our method of dealing with deceitful shots is sound.

5 Discussion

In this work, we introduce the aim test, a general method for determining whether
a point represents a local optimum for a weight during training, and propose
using it for pruning by applying the test for all weights simultaneously and
framing it as a saliency criterion. This method, coined FlipOut, demonstrates
several desirable qualities: it is computationally tractable, allows for an exact
level of sparsity to be selected, requires a single training run and has default
hyperparameter settings which generate near optimal results, easing the burden
of hyperparameter search.

We compare the performance of FlipOut to relevant baselines from literature
on a variety of object classification architectures. We show that it achieves state-
of-the-art performance at the highest levels of sparsity tested for 2 out of 3
networks, and maintains competitive performance in less sparse regimes. Finally,
we conduct an ablation study on the two components of our algorithm, gradient
noise addition and the saliency criterion, and find that both play an important
role in yielding this performance performance.
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Abstract. Human emotion detection has received increasing attention over the last decades for a variety of applica-
tions and systems. However, detecting the intensity of the expressed emotion has not been investigated as much as
detecting the type of the expressed emotion. To fill this gap, we investigate the utility of different facial and speech
features for emotion intensity detection. To this end, we designed different Deep Neural Network based models and
applied them to the RAVDESS dataset. Obtained results show that speech signal features are better indicators of
emotion intensity than facial features. However, in the absence of speech signals, finding emotion intensity by facial
expressions is more accurate for males in comparison to females.
The difference between the accuracy of emotion intensity detection for two genders motivated us to use speech sig-
nals for the gender detection task. The obtained results confirm that the proposed model achieves higher accuracy in
emotion intensity detection and is more robust in gender detection than the state-of-the-art.

Keywords: Emotion Intensity Detection · Gender Detection · Deep Learning.

1 INTRODUCTION

Detecting human emotions is crucial in developing cognitive and adaptive behaviors for artificial intelligent systems,
robots, and (virtual) agents. Emotion detection is the ability to recognize another’s affective state, which typically
involves the integration and analysis of human expressions through different modalities, like facial expression, speech,
body movements, and gestures [5]. Mehrabian [21] showed 55% of human emotions are conveyed through facial
expression and 38% through speech, therefore, facial and speech emotion recognition received significant attention
during the last decades. Although finding the type of expressed emotion is essential to adapt to a user’s affective state,
it is not enough, and a difference in intensity has been proven to be important to distinguish different emotional states
[13]. For instance, a polite smile versus embarrassed smile [1] and posed versus spontaneous smile are separable by
differences in their expression intensities [7]. Since there is not much research on emotion intensity detection, in the
following sections, the state-of-the-art in speech emotion recognition and facial emotion recognition are discussed.

1.1 Speech Emotion Recognition (SER)

The effect of emotions can be seen in both acoustic characteristics and lexical content of speech. Some examples of
acoustic features are Mel-Frequency Cepstral Coefficients (MFCC), energy, jitter, and shimmer, which are known as
Low-Level Descriptors (LLDs) [14] 1. Some examples of lexical features are the presence/absence of word stems,
and bag-of-words sentiment categories [28]. However, when the linguistic content is not emotionally rich, recognizing
emotion from the transcript is very difficult [28], thus, in this study, our focus is on the acoustic characteristics for
recognizing the emotion intensity.
In traditional SER methods, the acoustic features are first extracted and then different machine learning algorithms
like Support Vector Machine (SVM) [23], K-nearest neighbor [15] and Hidden Markov model [26] are applied to the
obtained features to classify them into considered emotion classes. To obtain these features from utterance-level, each
signal is broken into shorter frames of 20 to 50 milliseconds, and their features, i.e., frame-level features, are extracted.
However, emotional contents are not in static values of these features but are in their temporal variations. Thus, different
statistical functions, e.g., minimum, maximum, mean, variance, linear regression coefficients, etc., are applied to these

1 Some other investigated acoustic characteristics, i.e., LLDs, are zero-crossing rate, duration, and higher-order formants, Mel-
filterbank features, spectral features, formant locations/bandwidths, perceptual linear prediction, fundamental frequency, and
pitch.
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features to illustrate their temporal variations and contours. The obtained results, afterward, are unified in a vector to
achieve utterance-level features [22].
Due to the success of deep learning in different fields like image, video, and natural language processing, the interest
in applying Deep Neural Networks (DNN) for speech emotion recognition also increased. Authors in [11] and [17]
used deep feed-forward and recurrent neural networks to learn the frame-level acoustic features, and used extreme
learning machines for the utterance-level aggregation. Mirsamadi et al. [22] used Rectified Linear Unit (ReLU) dense
layers to learn frame-level features, and Bidirectional Long Short-Term Memory (BiLSTM) recurrent layers to learn
the temporal aggregation. Neumann et al. [25] used a Convolutional Neural Network (CNN) with one convolutional
layer and one pooling layer, to learn the representation of the audio signal, and an attention layer to compute the
weighted sum of all the information extracted from different parts of the input. Lim et al. [18] transformed the speech
signal into 2D representation using Short Time Fourier Transform and sent them to concatenated CNN and LSTM
architectures without using any traditional hand-crafted features. Trigeorgis et al. [32] applied two BiLSTM layers
to balance the frame-level characterization and utterance-level aggregation and transform frame-level convolutional
features directly into continuous arousal and valence output so that the model learned direct mapping from time-
domain speech signals into the continuous model of emotion. The temporal model proposed in [12] used BiLSTM to
represent forward/backward contextual information of temporal dynamics of the speech signal and conducted a CNN
and a capsule net to learn temporal clusters and classify the extracted patterns. Mustaqeem et al. [24] obtained the
spectrogram of signals and then used CNN and LSTM to classify the speech.

1.2 Facial Emotion Recognition (FER)

Ekman [8] showed six basic emotions2 are expressed universally the same through facial muscles. He introduced the
Action Unit (AU) to indicate fundamental movements of a single or group of muscles through the facial expression
of a special emotion 3. He also defined the Facial Action Coding System (FACS) to encode the movements of these
AUs [10]. One way to recognize a facially expressed emotion is detecting the status of all individual AUs and then
analyzing the combination of the activated AUs to obtain the expressed emotion. On the other hand, promising results
of DNN based approaches in comparison with classical machine learning algorithms lead to the proposal of numerous
DNN based FER methods in the research community. For instance, Bagheri et al. [2] used facial muscle activities as
raw input for a Stacked Auto Encoder (SAE). The applied SAE returns the best combination of muscles in describing a
particular emotion, which is then sent to a Softmax layer to fulfill the multi-classification task. Liu et al [19] proposed
a sign-based DNN architecture to investigate the effect of AUs in emotion recognition. The proposed model consists of
three sequential modules, where the first module generates a complete representation of all expression-specific appear-
ance variations by a convolution layer stacked by a max-pooling layer. The second module finds the best simulation of
the combination of the AUs and the last module learns hierarchical features by Restricted Boltzmann Machines (RBM).
Finally, a linear SVM classifier is used to recognize the six basic emotions. However, AU-aware layers, in the second
module, are not able to detect all FACS in images. Pitaloka et al [27] used CNN to extract features from an input image,
which is then passed to a max-pooling layer to reduce the image size. A fully connected layer, in the end, classifies the
input image into one of the six basic emotions. However, the performance of the proposed algorithm decreases when
the dimension of the input image increases regarding the complexity of the high dimensional images.

Research on emotion intensity detection has been focused on the estimation of the intensity of Action Units (AU),
e.g., [6, 13] and FERA 20154, however, there is no conclusion about the intensity of the expressed emotion, thus, the
goal of this study is developing a model by which the intensity of the expressed emotion in a given image, speech
signal or video can be identified.
The remainder of this paper is structured as follows: the applied models, dataset, and extracted features are explained
in Section 2. Section 3 demonstrates the conducted experiments and obtained results. Finally, Section 4 concludes this
paper.

2 Happiness, sadness, fear, anger, surprise, and disgust.
3 https://imotions.com/blog/facial-action-coding-system/
4 Facial Expression Recognition and Analysis challenge
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Table 1
The architectures of the proposed DNN based models.

LSTM BiLSTM CNN
Simple Attention Simple Attention Simple BiLSTM/LSTM BiLSTM/LSTM+Attention

LSTM LSTM BiLSTM BiLSTM CNN CNN CNN
Dropout Attention Dropout Attention CNN CNN MaxPooling
Dense Dropout Dense Dropout Dropout MaxPooling CNN

Dense Dense MaxPooling Flatten MaxPooling
Flatten BiLSTM/LSTM Flatten
Dense Dense BiLSTM/LSTM
Dense Attention

Dropout
Dense

2 METHODOLOGY

2.1 Applied Models

Table 1 shows the number, type, and order of layers of proposed models that are applied to fulfill the emotion intensity
detection task. The parameter settings are as follows: convolution layers are all 1D and have 64 filters and kernel size
of three. ReLU activation function is applied for adding non-linearity. Dropout layers are used as regularizers and their
ratio is set to 0.1. 1D max-pooling layers, with a kernel size of four are used to introduce sparsity in the network
parameters and to learn deep feature representations. Dense layers are used with the activation functions of sigmoid for
finding the predicted binary distribution of the target class. The number of epochs is selected as 250 and the batch size
is set to 128. The number of units in applied LSTM and BiLSTM networks is five.

2.2 Dataset

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [20] is used to train and test the
proposed models. RAVDESS contains videos which provide both facial and speech features. Each video lasts approx-
imately three seconds and contains frontal face poses of twelve female and twelve male, all north American actors and
actresses, speaking and singing two lexically-matched sentences while expressing six basic emotions plus calmness,
and neutral. In this study, we only used speaking records. Further, expressed emotions in RAVDESS are categorized
into two levels of normal and strong intensities, which makes it a good option for emotion intensity detection.
The dataset is partitioned, in a subject independent manner, into the train and test sets, i.e., the videos related to the
first eighteen actors (nine female, nine male) are used for training, and the videos of the next six subjects (three female,
three male) are used for testing. Since videos are recorded with 30 fps, 30 images are extracted per second for facial
analysis. However, as each video starts from a neutral state, reaches an apex, and goes back to a neutral state, the first
and last twenty obtained frames per video are discarded.
Since the expressions of neutral are not categorized as normal or strong, this emotional state is not considered for
emotion intensity detection. Additionally, the normal and strong expressions of calmness are only marginally different,
therefore, they are omitted from the emotion intensity detection.

2.3 Features and Data Pre-processing

To obtain facial and speech features, two open-source toolkits, i.e., OpenFace [3] and openEAR [9], are used. Open-
Face is able to return different features including facial landmarks, head pose, facial action units activity, and eye-gaze
from both video and image inputs. The applied features in this study are facial landmarks, facial action units activity,
and face rigid and non-rigid shape parameters leading to a vector of 378 elements 5. The obtained feature values are
normalized between zero and one.

5 Other features provided by OpenFace were also investigated, however, the mentioned features resulted in the highest classification
accuracy.
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Table 2
The obtained accuracies for emotion intensity detection by proposed models on RAVDESS dataset based on
facial and speech features (without neutral and calmness expressions). The results were obtained over ten repe-
titions.

(a) Facial features.

Data LSTM BiLSTM CNN CNN
Simple Attention Simple Attention Simple LSTM BiLSTM LSTM+Attention BiLSTM+Attention

Female and Male 53.34 52.46 53.27 54.13 55.96 55.06 54.79 55.31 56.24
Female 51.67 50.31 50.14 51.12 52.50 53.52 51.72 50.63 54.72
Male 54.24 53.72 52.81 53.66 58.38 56.45 54.26 56.97 58.31

(b) Speech features.

Data LSTM BiLSTM CNN CNN
Simple Attention Simple Attention Simple LSTM BiLSTM LSTM+Attention BiLSTM+Attention

Female and Male 63.5 61.70 67.65 69.03 69.45 68.54 69.46 60.53 73.53
Female 68.51 67.62 67.41 69.52 72.61 72.45 72.43 59.83 75.67
Male 57.36 55.30 55.97 55.21 59.73 59.18 59.72 58.87 65.5

openEAR is the open-source toolkit that is used for speech feature extraction. It analyses the speech signals and
returns three different sets of features based on the applied configuration, i.e., INTERSPEECH 2009, emobase, and
INTERSPEECH 2013. In this study, the INTERSPEECH 2009 (emo-IS09) [29] configuration is used, which leads
to 384 features including minimum, maximum, and mean values of different speech features. In this study, only the
MFCC and PCM set of features are used, which lead to a vector of 156 elements 6. The obtained feature values are
normalized between zero and one.

3 EXPERIMENTAL SCENARIOS AND OBTAINED RESULTS

3.1 Experiment I: Emotion Intensity Detection

As the main goal of this study is to identify the intensity of an expressed emotion by a user, the facial and speech
related features of all subjects are extracted and pre-processed (as explained in Section 2.3) and are given to the pro-
posed models (Table 1). The obtained results in Table 2 show that speech features lead to higher accuracy in emotion
intensity detection than facial features. Further, Table 1 shows the combination of convolutional layer with the BiL-
STM and Attention layers (CNN+BiLSTM+Att) achieves the highest performance, i.e., 73.53%, which is higher than
state-of-the-art, i.e., 70.4% [12] (Table 4).
Although speech features lead to higher accuracy than facial features, Table 2.a shows that the accuracy of the mod-
els in identifying the intensity of the expressed emotions by males is higher than expressed emotions by females
when facial features are used, i.e., 58.31% vs 54.72%. In comparison, when speech features are used, the obtained
accuracy for females is higher than for males, i.e., 75.67% vs 65.5% (Table 2.b). La Mura [16] showed some of the
speech features related to emotion recognition are related to the subject’s gender. Thus, one explanation can be that
females convey more details about the intensity of their emotions through their speech. To verify this hypothesis, the
CNN+BiLSTM+Att model is separately applied to both the facial and speech features of each individual subject. The
obtained results (Table 3.a) show that for males obtaining the emotion intensity by facial expressions is more accurate
than for females, i.e., the minimum and maximum accuracies for males are 63.92% and 78.79%, respectively, while
the corresponding values for females are 58.26% and 71.15%. On the other hand, Table 3.b shows finding emotion
intensity via speech features for females is more accurate than males, i.e., the minimum and maximum accuracies for
females are 71.49% and 95.83% while the corresponding values for males are 59.29% and 85.71%, respectively.

6 Different combinations of features were used, however, the highest accuracy was obtained for the the applied feature set, thus,
we did not use the other features. In addition, since openEAR is able to analyze a file, we did not trim the videos into smaller
intervals, which reduced the running time remarkably.
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Table 3
Accuracy of emotion intensity detection based on facial and speech data for males and females. The results
obtained over ten repetitions.

(a) Facial features.

Male Acc STD Female Acc STD

Sub#1 64.97 2.3 Sub#2 68.36 1.6
Sub#3 77.53 2.5 Sub#4 66.05 2.5
Sub#5 78.79 1.3 Sub#6 69.46 1.4
Sub#7 75.85 2.6 Sub#8 62.17 5.3
Sub#9 72.62 1.8 Sub#10 67.55 1.2

Sub#11 72.71 2.1 Sub#12 68.42 4.7
Sub#13 63.92 3.1 Sub#14 69.19 2.2
Sub#15 66.03 2.5 Sub#16 63.11 3.6
Sub#17 67.78 2.1 Sub#18 71.15 2.1
Sub#19 73.23 2.3 Sub#20 69.32 2.8
Sub#21 74.91 1.9 Sub#22 61.62 1.4
Sub#23 73.84 2.7 Sub#24 58.26 1.9

(b) Speech features.

Male Acc STD Female Acc STD

Sub#1 82.86 8.3 Sub#2 88.46 4.2
Sub#3 84.21 3.0 Sub#4 87.85 4.8
Sub#5 59.29 4.8 Sub#6 85.57 4.1
Sub#7 80.71 5.8 Sub#8 75.49 4.9
Sub#9 85.71 6.3 Sub#10 71.49 3.3

Sub#11 70.49 7.3 Sub#12 78.57 6.7
Sub#13 70.01 11.0 Sub#14 74.29 3.6
Sub#15 60.00 7.6 Sub#16 79.23 5.1
Sub#17 85.71 6.7 Sub#18 95.83 4.3
Sub#19 74.29 6.9 Sub#20 67.17 8.8
Sub#21 67.50 7.3 Sub#22 72.5 9.6
Sub#23 83.50 9.8 Sub#24 95.38 5.3

Table 4
Comparison between the proposed model and the state-of-the-art for emotion intensity detection over RAVDESS
on speech features in a subject independent manner.

Research Architecture Accuracy

Jalal [12] CNN + BiLSTM + CapsuleNet 70.4%
Proposed model CNN + BiLSTM + Attention 73.53%

3.2 Experiment II: Gender Detection

Since the obtained accuracies for emotion intensity detection for males and females are noticeably different, in this
experiment we investigated the speech and facial features for the task of gender detection. As the results of the pro-
posed models (Table 1) by using facial features were not promising, a new model was designed for this experiment.
The new proposed model uses raw images of 200× 200 pixels as input and consists of four layers, wherein each a 2D
convolutional layer is followed by a max-pooling and a dropout layer. The kernel size of the convolution layers is 3×3,
with the same padding size, and ReLU is used as the activation function. The max-pooling layer is 2 × 2 and dropout
rates in different layers are set to 0.6, 0.4, 0.2, and 0.2, respectively. The batch size during the train and test is set to 32.
The first eighteen subjects are used for training and the last six subjects are used for testing (subject independent and
gender balance). The obtained accuracy of this model is 70.46%.
Repeating the experiment with the speech features led to higher accuracy for gender detection via the proposed models
in Table 1. More specifically, CNN+BiLSTM+Att model obtained an accuracy of 89.8% for gender detection using the
MFCC and PCM feature sets, which is the highest obtained accuracy in comparison with the other proposed models in
Table 1. Table 5 shows the obtained confusion matrix by the proposed model for gender detection. We noticed that 20
of the female samples that are wrongly predicted as male belong to one subject.
A straightforward comparison between the proposed model and the state-of-the-art for gender detection task, using
speech signals of RAVDESS dataset, is difficult. For instance, Singh et al. [31] performed gender detection in each in-
dividual emotion class assuming the emotion class is known. Bansal et al. [4] used only four expressions of RAVDESS
for gender detection and obtained an accuracy of 94.12%, and Shaqra et al. [30] considered six emotions and obtained
an accuracy of 98.67%, while a gender detection model should be robust to various emotions. Thus, in this study, we
used all expressed emotional states in RAVDESS dataset, i.e., eight emotional states, for the task of gender detection.
Table 6 compares the obtained accuracy by the proposed model with the state-of-the-art. Although the proposed model
could not beat the state-of-the-art, it is more robust since it considers more emotional states.
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Table 5
Confusion matrix for gender detection.

Predicted Female Predicted Male

Actual Female 143 25
Actual Male 9 159

Table 6
Comparison between the proposed model and the state-of-the-art for gender detection over RAVDESS on speech
features in a subject independent manner.

Research Model Accuracy

Bansal et al. [4] (four emotional states) SVM 94.12%
Shaqra et al. [30] (six emotional states) MLP 98.67%
Proposed model (eight emotional states) CNN + BiLSTM + Attention 89.8%

4 CONCLUSION

In this study, we designed different deep neural network based models for emotion intensity and gender detection using
features obtained by open-source toolkits. The RAVDESS dataset was used to evaluate the proposed models because it
is, to the best of our knowledge, the only dataset that categorizes emotions based on their intensity.
The obtained results showed a difference between the obtained accuracy of emotion intensity detection for females and
males based on the applied feature set, i.e., using facial features led to more accurate results for males than for females,
while using speech features led to higher accuracy for females’ emotion intensity detection. Additionally, the results
showed that the MFCC and PCM feature sets led to higher accuracy than facial features in emotion intensity detection.
Further, we used the proposed models for gender detection task using facial and speech features. The obtained results
showed that gender detection is also more accurate by using speech features than facial features for the RAVDESS
dataset. In addition, the obtained results showed that the proposed model is comparable with the state-of-the-art while
it is more robust in terms of handling more emotional states.
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Abstract. In this paper we seek the minima of performance metrics
for binary classification to facilitate comparison between metrics and
applications, and to assess the quality of inferential statistics made from
non-probability samples. We use these minima to min-max normalize
the performance metrics so that they can be interpreted as a percentage
of the perfect classifier relative to the proverbial chimps at the zoo†

guessing at random. We compare our results with the balanced metrics
that have been introduced recently, which are corrected for bias due to
class imbalance.

Keywords: Inferential statistics · Non-probability samples · Statistical
learning · Supervised machine learning · Binary classification.

1 Introduction

Imagine you have to do a school exam. The test consists of one hundred multiple
choice questions. At each question you can choose from four possible answers (A,
B, C or D). In the Netherlands, students pass when they score 6 points or more
on a scale from 0 to 10. Is it sufficient to answer sixty questions correctly to
pass the test? Maybe not, because the proverbial chimps at the zoo that choose
answers randomly will on average answer twenty five questions correctly. The
teacher could correct for that minimum by grading twenty five correct answers
a 0 and then scaling linearly to maintain a perfect score when no mistakes are
made by the student, Then, a student answering sixty questions correctly fails
the test, having a score of 4.7 on the scale from 0 to 10. The student would
now have to answer at least seventy questions correctly to pass the test. From a
statistical point of view, an advantage of this so-called min-max normalization,

†Inspired by Swedish physician Hans Rosling (1948–2017).
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is that the students’ grades are now comparable with the grades at a second
school where the students can choose between two possible answers (A or B).
The proverbial chimps at the zoo that answer randomly will then answer fifty
question correctly, on average. After min-max normalization, a student at that
second school will only pass the test when answering eighty or more questions
correctly.

In supervised machine learning, algorithms instead of students are trained
to find the right answer to a multiple choice question. The algorithm learns, for
example, that in the case of a drawing the subject is a ‘moon’, ‘rose’ or ‘fish’.
(These are the first words Dutch children learn to read. Many algorithms are
still in elementary school and it is nice to use something else than pictures of
cats and cars as an example.) What final grade does an algorithm get for its
answers to new drawings? For this purpose a considerable list of performance
metrics has been developed (see, e.g., [7]). For some of them it is unclear what
the score of the control group would be: how well would the chimps at the zoo
perform?

In this paper, we will provide an answer to that question. The answer is
important from a statistical point of view: as students’ grades should preferably
be comparable between subjects and schools, we would like the performance of
algorithms to be comparable between metrics and applications. Moreover, we
would like to have a statistical interpretation of the actual value of a perfor-
mance metric, such that the interpretation is independent of the metric and
application, similar to the min-max normalized grade of a multiple-choice test:
a grade equal to 6 can always be interpreted as 60 percent between guessing and
perfection. That statistical interpretation is essential when employing supervised
machine learning algorithms at national statistical institutes, such as Statistics
Netherlands, to produce official statistics.

Official statistics provide quantitative information about the status and de-
velopment of well-defined populations such as businesses or households. One of
the challenges is to produce such information at reasonable accuracy, cost and
time. A burning question in official statistics is how to make inference from non-
probability (NP) samples [8]. NP samples like social media messages or sensor
data can offset some disadvantages of questionnaires sent to units in a proba-
bility sample, such as response burden, high costs and a considerable time lag
between data collection and dissemination [1]. However, not all units in the pop-
ulation of interest have a positive and known probability of being included in an
NP sample. This rules out design-based estimators from sampling theory.

Alternatively, the data-generating mechanism of NP samples can be deduced
by modeling the relationship between features and the target variable in the NP
sample and use it to predict the missing data, assuming they are missing at ran-
dom. Statistical models could then be deployed, but more often machine learning
algorithms are used, because they are designed for prediction or extrapolation
and scale better with the number of features.

To assess the quality of the extrapolations, the quality of the predictions are
assessed on test sets for which the actual value is known. A range of performance
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metrics exists to this end [7]. However, as noted before, it remains unclear what
the proverbial chimps at the zoo would achieve by randomly guessing the value of
the target variable. A typical example is high accuracy in imbalanced datasets: if
a class has a relative frequency of 95%, it is easy to obtain a seemingly impressive
accuracy of 95% by always ‘predicting’ the most common class.

In this paper we seek the minima of performance metrics for binary clas-
sification to facilitate comparison between metrics and to assess the quality of
inferential statistics made from NP samples. We use these minima to min-max
normalize the performance metrics so that they can be interpreted as percent-
age of perfection relative to the performance of the proverbial chimps at the zoo.
We compare our results with balanced metrics [6], which have been corrected
for bias due to class imbalance. In our view, the paper is a methodological con-
tribution with preliminary simulation results that encourage a more thorough
experimental study in the future.

2 Imbalanced performance metrics

We assume that we have a test set of n data points, n1 of which are labeled
positive: yi = 1, where yi is the observed class of instance i. The fraction α =
n1/n is referred to as the base rate. The algorithm trained on a training set of
N − n data points predicts for all n instances the probability that instance i
belongs to the positive class: p̂i = P(yi = 1). By choosing a cutoff 0 ≤ c ≤ 1
above which the probability p̂i is assigned to the positive class, a 2×2 contingency
table or confusion matrix can be constructed (Table 1). Optimizing cutoff c is
discussed in Section 4.

Table 1. Confusion matrix for cutoff c. Cells highlighted in gray can be used to derive
all other cells and metrics.

Predicted
Positive Negative

∑

Actual Positive Xc n1 −Xc n1 TPRc = Xc
n1

Negative Yc n2 − Yc n2 := n− n1 TNRc = n2−Yc
n2

= 1− Yc
n2∑

Xc + Yc n−Xc − Yc n

PPVc = Xc
Xc+Yc

NPVc = n2−Yc
n−Xc−Yc

α = n1
n

From this confusion matrix the following well-known performance metrics
are derived (left two columns of Table 2). Accuracy (ACCc) is the fraction of
all cases that is predicted correctly. The true positive rate (TPRc), also known
as sensitivity or recall, is the fraction of positively labeled cases that is pre-
dicted correctly and the true negative rate (TNRc), also known as specificity,
is the fraction of negatively labeled cases that is predicted correctly. The posi-
tive predictive value (PPVc), also known as precision, is the fraction of predicted
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positive cases that is actually labeled ‘positive’ and the negative predictive value
(NPVc) is the fraction of predicted negative cases that is actually labeled ‘neg-
ative’. The receiver operating characteristic curve, or ROC curve, plots TPRc
against the complement of TNRc for 0 ≤ c ≤ 1. The area under the ROC curve
(AUC) is used as a performance metric. Note that TPRc will decrease with
c whereas TNRc will increase with c. This trade-off is captured by Youden’s
J index (Jc) or Peirce Skill Score, which is also the vertical distance between
the ROC curve and the diagonal. Note also that PPVc will become unstable
at higher values of c, whereas NPVc will become unstable at lower values of c,
because the respective denominators decrease there. This trade-off is captured
by markedness (MRKc). The Matthews correlation coefficient (MCCc) is the
correlation between the actual and predicted binary classifications. The positive
F1 score (PF1c) is the harmonic mean of TPRc and PPVc. Analogously, the
negative F1 score (NF1c) is the harmonic mean of TNRc and NPVc. The har-
monic mean is more sensitive to one of the values being low than the arithmetic
mean.

Table 2. Imbalanced performance metrics and their expected value when randomly
guessing the positive class with probability g.

Metric Q Definition [7] E[Q(g)]

ACCc
n2+Xc−Yc

n
αg + (1− α)(1− g)

TPRc
Xc
n1

g

TNRc 1− Yc
n2

1− g
PPVc

Xc
Xc+Yc

α+O( 1
n2 )

NPVc
n2−Yc

n−Xc−Yc
1− α+O( 1

n2 )

AUC
∫ 1

c=0
TPRcdTNRc

1
2

Jc TPRc + TNRc − 1 0
MRKc PPVc +NPVc − 1 0 +O( 1

n2 )

MCCc
n2Xc−n1Yc√

n1n2(Xc+Yc)(n−Xc−Yc)
0 +O( 1

n2 )

PF1c
2

1
TPRc

+ 1
PPVc

= 2Xc
n1+Xc+Yc

2αg
(

1
α+g
− α(1−g)

n(α+g)3

)
+O

(
1
n2

)

NF1c
2

1
TNRc

+ 1
NPVc

= 2(n2−Yc)
n+n2−Xc−Y c 2(1− α)(1− g)

(
1

2−α−g −
(1−α)g

n(2−α−g)3
)

+O
(

1
n2

)

We will now formally introduce how to model the outcome of the predictions
made by the proverbial chimps at the zoo. To that end, let g be the probability
that a chimp at the zoo predicts the positive class. We assume that the chimps
will all guess according to one and the same strategy out of the following three:
they may toss a fair coin, throw a dice with n sizes, n1 of which are labeled
‘positive’, or always guess the most common class (the mode), i.e.:
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gunif =
1

2
gprop = α

gmode =

{
1 if α > 1

2

0 otherwise

Then, let X and Y be independently distributed random variables with bino-
mial distributions X ∼ Bin(n1, g) and Y ∼ Bin(n2, g). Each evaluation metric
is a random variable as well. Table 3 gives the expected confusion matrix. The
third column of Table 2 shows how to compute the expected value of each per-
formance metric. The proofs are provided in Appendix A.1. Five of the metrics
are linear functions in the random variables X and Y , hence, it is trivial to
compute their expected value. The expected value of the other six metrics take
the form E[f(X,Y )] for a nonlinear, real-valued function f . If n is very small,
these expectations could in theory be computed by the closed form expression

E[f(X,Y )] =

n1∑

l=0

n2∑

m=0

f(l,m)P(X = l)P(Y = m).

In practice, however, it might take a relatively long time to evaluate this expres-
sion if n gets large. So, unless n is small, the approximations given in Table 2
should be used. In addition, note that both X and Y have a (very small, but
strictly) positive probability of being 0, in which case f might not be defined
(e.g., for PPV we find 0/0). Mathematically, the correct way to deal with this
is to exclude the event by conditioning the expectations on its complement. In
practice, in particular for larger values of n, the obtained value will be very close
to simply skipping the terms in the summation where f is not defined.

Table 3. Expected confusion matrix when randomly guessing the positive class with
probability g.

Predicted
Positive Negative

∑

Actual Positive n1g n1(1− g) n1

Negative n2g n2(1− g) n2∑
ng n(1− g) n

3 Balanced performance metrics

Some performance metrics are biased due to class imbalance. Balanced perfor-
mance metrics are obtained by rewriting the imbalanced performance metrics
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as a function of the imbalance coefficient δ = 2α − 1 and setting δ to 0, i.e. α
to 1

2 [6]. Table 4 shows the balanced metrics and an approximation of their ex-
pected value when randomly guessing the positive class with probability g. The
derivations of the formulas in the third column can be found in Appendix A.2.

Table 4. Balanced performance metrics and their expected value when randomly guess-
ing the positive class with probability g.

Metric Qb Definition [6] E[Qb(g)]

ACCbc
TPRc+TNRc

2
1
2

TPRbc TPRc g

TNRbc TNRc 1− g
PPV bc

TPRc
TPRc−TNRc+1

1
2

+ δ(1−g)
2n(1+δ)(1−δ)g +O

(
1
n2

)

NPV bc
TNRc

TNRc−TPRc+1
1
2
− δg

2n(1+δ)(1−δ)(1−g) +O
(

1
n2

)

AUCb 2AUC − 1 0

Jbc Jc 0

MRKb
c PPV bc +NPV bc − 1 δ(1−2g)

2n(1+δ)(1−δ)g(1−g) +O
(

1
n2

)

MCCbc
TPRc+TNRc−1√

(TPRc−TNRc+1)(TNRc−TPRc+1)

δ(1−2g)

2n(1+δ)(1−δ)
√
g(1−g)

+O
(

1
n2

)

PF b1c
2TPRc

TPRc−TNRc+2
2g


 1

1+2g
−

2

(
1−δ(1+2g)

)
(1−g)

n(1+δ)(1−δ)(1+2g)3


+O

(
1
n2

)

NF b1c
2TNRc

TNRc−TPRc+2
2(1− g)


 1

3−2g
−

2

(
1+δ(3−2g)

)
g

n(1+δ)(1−δ)(3−2g)3


+O

(
1
n2

)

4 Min-max normalization and optimization

After establishing E[Q(g)], min-max normalization can be applied to rescale each
metric so that the proverbial chimps at the zoo score 0, on average:

Qmmnc (g) =
Qc − E[Q(g)]

1− E[Q(g)]
. (1)

Note that ACCmmn(g) equals the Heidke Skill Score [4] or Cohen’s κ [3] if g is
set to X+Y

n . This g is, however, not a random guessing probability. The Heidke
Skill Score min-max normalizes accuracy with the expected cell frequencies,
which depend on the model.

Through K-fold cross validation or bootstrapping, we obtain the quality of
K classifiers trained on different partitions or bootstrap samples of the data. We
propose to first average Qmmnkc per cutoff to determine the overall optimal cutoff
c∗, that is:

c∗ = arg max
c

Q
mmn

c , (2)
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in which

Q
mmn

c =
1

K

K∑

k=1

Qmmnkc . (3)

Then, we propose to use the distribution of Qmmnk (c∗) as a proxy for the quality
of the predictions when applied to unlabeled data for making statistical inference.

5 Example: normalized F1 scores

Figure 1 shows the F1 performance of a fictitious binary classifier that predicts
60% of the actual positive instances correctly (TPR = 0.6) and 80% of the actual
negative cases (TNR = 0.8), using gunif for normalization. Similar figures for
accuracy and F1 with gprop can be found in Appendix B. When the test set is
balanced (δ = 0, i.e. α = 0.5), this classifier scores PF1 = 2

3 and NF1 = 8
11 . The

more abundant the positive class relative to the negative class, the higher the
classifier scores on PF1 and the lower on NF1 (thin red line in left panels). One
solution to this sensitivity to class imbalance is to balance the metric (thin red
lines in right panels) by correcting for the bias. The alternative we propose is
to min-max normalize the metric (thick red line in left panels) by relating it to
the expected value when randomly guessing the positive class with probability
g (thin blue lines).

Two interesting observations can be made. First, data sets with a different
imbalance coefficient can be compared. The classifier performs best at δ ≈ −0.18
where PFmmn1 ≈ 0.34, i.e. 34% from perfection relative to tossing a fair coin. A
classifier with the same TPR and TNR in an application with a higher δ scores
better on PF1 (up to 3

4 ), the same on PF b1 but worse on PFmmn1 . Second, metrics
can be compared. Before min-max normalization, the classifier scores equally well
on PF1 and NF1 at δ = 1

7 (small white points). After min-max normalization,
however, the classifier scores equally well on PFmmn1 and NFmmn1 at δ ≈ 0.5
(large white points). Between 1

7 < δ < 0.5, PF1 > NF1 but PFmmn1 < NFmmn1 .
Note that E[F1] is sensitive to sample size n (see Tables 2 and 4), which be-

comes apparent when the metric is balanced and the sample is highly imbalanced
(Fig. 1, right panel, blue line).

6 Conclusion

In this paper, we propose to rescale performance metrics through min-max nor-
malization, where the minimum is set to the expected value when randomly
guessing the positive class with probability g. It should be explicitly specified
which expected value the algorithm is trying to defeat. Our proposed normaliza-
tion yields different results than correcting for bias due to class imbalance [6] or
balancing the sample [e.g. 2; 5]. The min-max normalized metrics allow for a bet-
ter comparison between applications and between metrics. Moreover, we propose
to use the distribution across test sets of a normalized metric at the overall opti-
mal cutoff as performance metric for inferential statistics. Future research could
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Fig. 1. Performance of a fictitious binary classifier in relation to imbalance coefficient
δ. g = 0.5, TPR = 0.6, TNR = 0.8, n = 1000. White points show where positive and
negative F1 intersect.
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focus on generalizing the results from binary classification to multi-class classi-
fication and regression, and on metrics that compare the predicted probability
directly with the actual label, without a cutoff for constructing the confusion
matrix.
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A Appendix - Proof of expected values

This appendix belongs to the paper by Burger & Meertens titled ”The algorithm
versus the chimps: On the minima of classifier performance metrics”. It contains
the proofs of the formulas provided in the third column of Table 2 and Table 4.

The key idea is to approximate an expectation of the form E[f(X,Y )], in
which X and Y are random variables and in which f is an infinitely differentiable
real-valued function, by inserting the Taylor series of f at (E[X],E[Y ]). More
specifically, let x0 = E[X] and y0 = E[Y ] and consider the second-order Taylor
series of f at (x0, y0):

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1

2
fxx(x0, y0)(x− x0)2 +

1

2
fyy(x0, y0)(y − y0)2

+ fxy(x0, y0)(x− x0)(y − y0). (4)

We then approximate the expectation E[f(X,Y )] by taking the expectation of
the right-hand side of the above equation. Then, assuming that X and Y are
uncorrelated, we find

E[f(X,Y )] ≈ f(x0, y0) +
1

2
fxx(x0, y0) Var(X) +

1

2
fyy(x0, y0) Var(y). (5)

In the proofs below we will specify the order of the approximation in terms of
the size n of the test dataset.

In the remainder of the appendix, n1 and n2 are positive integers that sum
up to n and g ∈ (0, 1) represents the probability that class 1 is predicted by the
proverbial chimps at the zoo. Moreover, X will be a random variable distributed
as Bin(n1, g) and Y a random variable distributed as Bin(n2, g). The random
variables X and Y are assumed to be independent. The expectation and variance
are given by

x0 = E[X] = n1g, Var(X) = n1g(1− g), (6)

and

y0 = E[Y ] = n2g, Var(Y ) = n2g(1− g). (7)

Finally, we will use the notation α = n1/n (and hence 1 − α = n2/n) and
δ = 2α− 1 = (n1 − n2)/n.

A.1 Expected value of imbalanced metrics

This appendix contains the derivations of the approximations of the expected
values of the imbalanced performance metrics, as presented in Table 2 of the
main text.
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Expected Positive Predictive Value (E[PPV ])

The positive predictive value PPV can be written as f(X,Y ) with f(x, y) =
x/(x+ y). Check that

fxx(x, y) =
−2y

(x+ y)3
, fyy(x0, y0) =

2x

(x+ y)3
. (8)

It follows that

E[PPV ] ≈ n1g

ng
− n2g

(ng)3
· n1g(1− g) +

n1g

(ng)3
· n2g(1− g) =

n1
n

= α. (9)

The higher order terms in the Taylor series of PPV are in O(1/n2). It can be
shown by looking at the terms or order 3 in the Taylor series. Only fxxx and
fyyy remain, which are both O(1/n3) when evaluated at (x0, y0), and the third
central moment of both X and Y are O(n).

Expected Negative Predictive Value (E[NPV ]) The negative predictive
value NPV can be viewed as the positive predictive value for the negative class,
i.e., to compute NPV we first swap the roles of n1 and n2 and replace g by 1−g
and then compute PPV . It follows that

E[NPV ] = 1− α+O

(
1

n2

)
. (10)

Expected Area under the ROC curve (E[AUC]) If the threshold value c
is equal to 1, then any coin toss prediction by the chimps is considered as tails,
corresponding to the point (0, 0) on the ROC curve. Similarly, c = 0 corresponds
to the point (1, 1) on the ROC curve. For any other value of the threshold
value c, the predictions by the chimps do not depend on c, and thus we have
TPRc = X/n1 and 1 − TNRc = Y/n2, for any 0 < c < 1. The ROC curve can
be obtained by connected these three points, resulting in (the random variable!)

AUC =
1

2

Y

n2

X

n1
+

(
1− Y

n2

)
X

n1
+

1

2

(
1− Y

n2

)(
1− X

n1

)

=
1

2

(
X

n1
+ 1− Y

n2

)
. (11)

It then follows that E[AUC] = 1
2 .

Expected Matthews Correlation Coefficient (E[MCC]) The Matthews
Correlation Coefficient (MCC) can be written as f(X,Y ) in which

f(x, y) =
n2x− n1y√

n1n2(x+ y)(n− x− y)
. (12)
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Introducing the function D(x, y) = n(x+ y)− (x+ y)2, the above simplifies to

f = (n1n2)−
1
2 (n2x− n1y)D−

1
2 . (13)

Both first order partial derivatives of D are equal to n− 2(x+ y). The identity
n2x0−n1y0 = 0 then implies that only the following term remains in fxx(x0, y0):

fxx(x0, y0) = 2 · (n1n2)−
1
2 · n2 · (− 1

2 ) ·D−
3
2 (x0, y0) · (2− n(x0 + y0))

=
−n2(1− 2g)

n2
√
n1n2g3(1− g)3

. (14)

Notice that fxx(x0, y0) = O(1/n2), and hence fxx(x0, y0) Var(X) = O(1/n).
Similarly, we obtain

fyy(x0, y0) = 2 · (n1n2)−
1
2 · (−n1) · (− 1

2 ) ·D−
3
2 (x0, y0) · (2− n(x0 + y0))

=
n1(1− 2g)

n2
√
n1n2g3(1− g)3

. (15)

Interestingly, we have derived that

fyy(x0, y0) Var(Y ) = −fxx(x0, y0) Var(X). (16)

In particular, we have fyy(x0, y0) Var(Y ) = O(1/n). Finally, as f(x0, y0) = 0, we
have shown that

E[MCC] = 0 +O

(
1

n2

)
. (17)

Expected Positive F1 (E[PF1]) The positive F1 score (PF1) can be written
as f(X,Y ) for f(x, y) = 2x/(n1 + x+ y). Check that

fxx(x, y) =
−4(n1 + y)

(n1 + x+ y)3
, fyy(x, y) =

4x

(n1 + x+ y)3
. (18)

We leave it to the reader to check that fxxx(x0, y0) = O(1/n3) and fyyy(x0, y0) =
O(1/n3). It follows that

E[PF1] =
2n1g

n1 + ng
− 2(n1 + n2g)

(n1 + ng)3
· n1g(1− g) +

2n1g

(n1 + ng)3
· n2g(1− g) +O

(
1

n2

)

=
2n1g

n1 + ng
− 2n21g(1− g)

(n1 + ng)3
+O

(
1

n2

)

= 2n1g

(
1

n1 + ng
− n1(1− g)

(n1 + ng)3

)
+O

(
1

n2

)

= 2αg

(
1

α+ g
− α(1− g)

n(α+ g)3

)
+O

(
1

n2

)
. (19)

Notice that E[PF1(X,Y )]−PF1(E[X],E[Y ]) = O(1/n) and not O(1/n2). More-
over, the difference is strictly negative.
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Expected Negative F1 (E[NF1]) The approximation of the expectation of
the negative F1 score (NF1) can be obtained from that of PF1 by first swapping
n1 and n2 and replacing g by 1− g. In particular, we find

E[NF1] = 2(1− α)(1− g)

(
1

2− α− g −
(1− α)g

n(2− α− g)3

)
+O

(
1

n2

)
, (20)

Again, notice that E[NF1(X,Y )]−NF1(E[X],E[Y ]) = O(1/n) and not O(1/n2),
and that the difference is strictly negative.

A.2 Expected value of balanced metrics

This appendix contains the derivations of the approximations of the expected
values of the balanced performance metrics, as presented in Table 4 of the main
text. The derivations are similar to those in Appendix A.1, although the out-
comes are slightly different.

Expected balanced Positive Predictive Value (E[PPV b]) The balanced
positive predictive value PPV b can be written as f(X,Y ) with f(x, y) = (x/n1)/(x/n1+
y/n2). Check that

fxx(x, y) =
−2y/n2

n21(x/n1 + y/n2)3
, fyy(x0, y0) =

2x/n1
n22(x/n1 + y/n2)3

. (21)

It follows that

E[PPV b] =
1

2
− n1g

2(1− g)

n21(2g)3
+
n2g

2(1− g)

n22(2g)3
+O

(
1

n2

)

=
1

2
+

(n1 − n2)(1− g)

8n1n2g
+O

(
1

n2

)

=
1

2
+

δ(1− g)

2n(1 + δ)(1− δ)g +O

(
1

n2

)
. (22)

Observe that E[PPV b(X,Y )] − PPV b(E[X],E[Y ]) = O(1/n), in contrast to
E[PPV (X,Y )] − PPV (E[X],E[Y ]) = O(1/n2). However, the absolute value of
the term of order 1/n can be bounded from above by (1− g)/(8g).

Expected balanced Negative Predictive Value (E[NPV b]) The balanced
negative predictive value NPV b can be viewed as the balanced positive predic-
tive value for the negative class, i.e., to compute NPV b we first swap the roles
of n1 and n2 and replace g by 1− g and then compute PPV b. It follows that

E[NPV b] =
1

2
− δg

2n(1 + δ)(1− δ)(1− g)
+O

(
1

n2

)
. (23)

Again, observe that E[NPV b(X,Y )]−NPV b(E[X],E[Y ]) = O(1/n), in contrast
to E[NPV (X,Y )]−NPV (E[X],E[Y ]) = O(1/n2). However, the absolute value
of the term of order 1/n can be bounded from above by g/(8(1− g)).
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Expected balanced Markedness (E[MRKb]) The expectation of the bal-
anced markedness (MRKb) can be approximated as follows:

E[MRKb] = E[PPV b] + E[NPV b]− 1

=
1

2
+

δ(1− g)

2n(1 + δ)(1− δ)g +
1

2
− δg

2n(1 + δ)(1− δ)(1− g)
− 1 +O

(
1

n2

)

=
δ(1− 2g)

2n(1 + δ)(1− δ)g(1− g)
+O

(
1

n2

)
. (24)

It shows that E[MRKb(X,Y )] −MRKb(E[X],E[Y ]) = O(1/n), in contrast to
E[MRK(X,Y )] −MRK(E[X],E[Y ]) = O(1/n2). However, if g = 1

2 , then the
term of order 1/n is zero. If g 6= 1

2 , then the absolute value of the term of order
1/n can be bounded from above by (1− 2g)/(8g(1− g)).

Expected balanced Matthews Correlation Coefficient (E[MCCb]) The
balanced Matthews Correlation Coefficient (MCCb) can be written as f(X,Y )
in which

f(x, y) =
x/n1 − y/n2√

(x/n1 + y/n2)(2− x/n1 − y/n1)
. (25)

Introducing the function D(x, y) = 2(x/n1 + y/n2)− (x/n1 + y/n2)2, the above
simplifies to

f = (x/n1 − y/n2)D−
1
2 . (26)

The first order partial derivatives of D are equal to 2/n1 · (1−x/n1−y/n2). The
identity x0/n1− y0/n2 = 0 then implies that only the following term remains in
fxx(x0, y0):

fxx(x0, y0) = 2 · (1/n1) · (− 1
2 ) ·D−

3
2 (x0, y0) · 2/n1 · (1− x0/n1 − y0/n2))

=
−(1− 2g)

4n21
√
g3(1− g)3

(27)

Similarly, we obtain

fyy(x0, y0) = 2 · (−1/n2) · (− 1
2 ) ·D−

3
2 (x0, y0) · 2/n2 · (1− x0/n1 − y0/n2))

=
(1− 2g)

4n22
√
g3(1− g)3

. (28)

Finally, as f(x0, y0) = 0, it follows that

E[MCCb] =
−(1− 2g)n1g(1− g)

8n21
√
g3(1− g)3

+
(1− 2g)n2g(1− g)

8n22
√
g3(1− g)3

+O

(
1

n2

)

=
(n1 − n2)(1− 2g)

8n1n2
√
g(1− g)

+O

(
1

n2

)

=
δ(1− 2g)

2n(1 + δ)(1− δ)
√
g(1− g)

+O

(
1

n2

)
. (29)
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Once again, observe that E[MCCb(X,Y )] −MCCb(E[X],E[Y ]) = O(1/n), in
contrast to E[MCC(X,Y )]−MCC(E[X],E[Y ]) = O(1/n2). However, if g = 1

2 ,
then the term of order 1/n is zero. If g 6= 1

2 , then the absolute value of the term

of order 1/n can be bounded from above by (1− 2g)/(8
√
g(1− g)).

Expected balanced Positive F1 (E[PF b
1 ]) The balanced positive F1 score

(PF b1 ) can be written as f(X,Y ) for f(x, y) = (2x/n1)/(x/n1+y/n2+1). Check
that

fxx(x, y) =
−4(y/n2 + 1)

n21(x/n1 + y/n2 + 1)3
, fyy(x, y) =

4x/n1
n22(x/n1 + y/n2 + 1)3

. (30)

It follows that

E[PF b1 ] =
2g

1 + 2g
− 2n1(1 + g)g(1− g)

n21(1 + 2g)3
+

2n2g
2(1− g)

n22(1 + 2g)3
+O

(
1

n2

)

= 2g


 1

1 + 2g
−

(
n2 − (n1 − n2)g

)
(1− g)

n1n2(1 + 2g)3


+O

(
1

n2

)

= 2g


 1

1 + 2g
−

2
(

1− δ(1 + 2g)
)

(1− g)

n(1 + δ)(1− δ)(1 + 2g)3


+O

(
1

n2

)
(31)

The term of order 1/n is bounded from above by 2g2(1 − g)/(2g + 1)3, which
is at most 8/243 ≈ 0.033 at g = 2/5. Moreover, it is bounded from below
by −2g(1 − g2)/(2g + 1)3, which is at least −4/243 · (7

√
7 − 10) ≈ −0.14 at

g = (
√

7− 2)/3 ≈ 0.22.

Expected balanced Negative F1 (E[NF b
1 ]) The approximation of the ex-

pectation of the balanced negative F1 score (NF b1 ) can be obtained from that of
PF b1 by first swapping n1 and n2 and replacing g by 1− g. In particular, we find

E[NF b1 ] = 2(1− g)


 1

3− 2g
−

2
(

1 + δ(3− 2g)
)
g

n(1 + δ)(1− δ)(3− 2g)3


+O

(
1

n2

)
, (32)

The term of order 1/n is bounded from above by 2g(1 − g)2)/(2(1 − g) + 1)3,
which is at most 8/243 ≈ 0.044 at g = 3/5, and bounded from below by −2(1−
g)(1− (1− g)2)/(2(1− g) + 1)3, which is at least −4/243 · (7

√
7− 10) ≈ −0.14

at g = (5−
√

7)/3 ≈ 0.78.

B Appendix - Performance of fictitious binary classifier

This appendix shows how a fictitious binary classifier with TPR = 0.6 and
TNR = 0.8 performs on accuracy (Figs. 2 and 3) and F1 (Figs. 1 and 4 when
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it is min-max normalized with the expected value when randomly guessing the
positive class with probability g = 0.5 (Figs. 2 and 1) or g = α (Figs. 3 and
4), as a function of imbalance coefficient δ. Shown are imbalanced metrics (left
panels) and balanced metrics (right panels), which have been corrected for bias
due to class imbalance.

When gunif = 1
2 is chosen as control, E[ACC(gprop)] = 1

2 (Fig. 2, left panel,
blue line). When gprop = α is chosen as control, E[ACC(gprop)] is a quadratic
function (Fig. 3, left panel, blue line; see Table 2). As a result, the classifier is
outperformed (ACCmmn(gprop) < 0) by this strategy when imbalance is large

(here when δ < −1−
√
41

10 ≈ −0.74 or δ > −1+
√
41

10 ≈ 0.54).

Imbalanced Balanced
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E[ACC(gunif)]
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Fig. 2. Accuracy of a fictitious binary classifier in relation to imbalance coefficient δ.
g = 0.5, TPR = 0.6, TNR = 0.8, n = 1000.

Before min-max normalization, the classifier scores equally well on PF1 and
NF1 at δ = 1

7 (Fig. 4, small white points). After min-max normalization using
gprop, however, the classifier scores equally well on PFmmn1 and NFmmn1 at
δ = − 1

3 (large white points). For δ < − 1
3 and δ > 1

7 , the regular F1 and
normalized Fmmn1 (gprop) disagree on whether the model performs better on the
positive or the negative class.

By definition, the balanced F1 is insensitive to class imbalance. After min-
max normalization with gprop, however, it is sensitive again to class imbal-
ance. The larger the imbalance coefficient, the lower the classifier scores on
PFmmn,b1 (gprop) and the higher on NFmmn,b1 (gprop) (Fig. 4, right panels).
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Imbalanced Balanced
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Fig. 3. Accuracy of a fictitious binary classifier in relation to imbalance coefficient δ.
g = α, TPR = 0.6, TNR = 0.8, n = 1000.
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Fig. 4. F1 of a fictitious binary classifier in relation to imbalance coefficient δ. g = α,
TPR = 0.6, TNR = 0.8, n = 1000. White points show where positive and negative F1

intersect.
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Guillaume Aubert2, Georges Klenkle2, and Hugues Bersini1
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Abstract. A growing number of private companies and public admin-
istrations is adopting Internet of Things (IoT) technologies to monitor
resources, spaces, activities and events. Ensuring the required levels of
quality of service and security is a key aspect in managing a service
based on IoT. We introduce Philéas, a joint project between Degetel
Belgium and the IRIDIA laboratory of the Université Libre de Bruxelles
to develop a framework to analyze the activity of IoT systems and to
identify possible issues via anomaly detection. In this paper we describe
our framework, and we present as a demonstration two real cases that
have been tackled using this framework.

Keywords: Anomaly Detection · Industrial applications · Internet of
Things · Machine Learning · Quality of Service · Security.

1 Introduction

Internet of Things (IoT) devices are increasingly deployed to address a variety
of real world tasks. The umbrella term Internet of Things encompasses a vari-
ety of technologies that collect, elaborate and transfer data over a network to
other devices and servers in an automated and pervasive fashion [2]. They find
application in a variety of domains from smart homes [42, 45] to smart cities [35,
50], from agriculture [18, 47] to manufacturing [23, 34], from healthcare [3, 29,
49] to transportation and mobility [17, 43], and many more. Due to the poten-
tial impact on society, public administrations also take a great interest in these
technologies, from local to international scale [22, 37]. Though estimates on the
actual number of devices vary wildly, there is strong consensus on the fact that
the exponential growth will only continue in the next years, reaching the tens of
billions of devices in the very near future [12, 36].

The growth of IoT technologies is however not without concerns. The com-
plexity and scale of their applications, their ubiquity and interconnection, the
heterogeneity and limited capabilities of technologies involved, the collection
and treatment of personal and/or sensitive data are all factors that pose serious

∗A.F., R.G. and J-C.N. contributed equally to this work.
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challenges regarding energy management, security and privacy [15, 19]. IoT tech-
nologies offer several vulnerabilities for malicious actors to exploit or, simply, for
faults and issues to happen [7]. The timely detection of such issues plays a key
role in the management of an IoT network and application.

Big Data technologies and Artificial Intelligence (AI), in particular Machine
Learning (ML), techniques are instrumental in assisting human operators in
the monitoring, analysis and resolution of such issues [21, 26, 28, 31, 32, 40, 46,
52]. Devices collect a huge amount of data that is sent to other devices and
central servers, where it is stored to be processed. While the data collected can
be analyzed for the specific application, the metadata consisting in the message
headers is useful to understand the state of the network and application. In large
amounts of data, patterns of behaviour are likely to emerge, and deviations from
them can be an indication of potential problems.

In this work we introduce Philéas, a framework conceived to assist managers
and operators of IoT networks and applications in the analysis of IoT data. In
particular, while in this project we have analyzed several different cases and ap-
plications, our main focus is the detection of anomalies in the metadata received
from the devices. Philéas focuses on the analysis of anomalies from a centralized,
application perspective, as independent as possible from the technical details of
the devices and the network protocol, and not relying on external information
about the network status. Philéas is a joint project between Degetel,1 a con-
sulting and services group specialized in digital transformation in France and
Belgium with 15 years of experience in the IoT domain, and IRIDIA, the AI
laboratory of the Université Libre de Bruxelles (ULB). Philéas answers spe-
cific market demands from the clients of Degetel regarding the management and
securitization of IoT infrastructures. The project is funded by Innoviris, the in-
stitute of the Brussels Capital Region for technological innovation, with the goal
of transferring academic knowledge into the industrial domain, and aims at ex-
ploring advanced AI solutions that can accompany more traditional approaches.

In the following Section we review the context of this project, the challenges
in IoT systems that we address within this project and some existing relevant
approaches. In Section 3 we describe the Philéas framework, including its infras-
tructure and the algorithms we implemented. In Section 4 we present two real
world cases tackled in this project, before concluding in Section 5.

2 Background and related work

2.1 Internet of Things

Internet of Things (IoT) is a set of technologies based on uniquely identifiable
devices capable of communicating with each other over a network without human
interaction [2, 7]. Though the definition is rather broad, with IoT we usually refer
to low power embedded devices with limited computational capabilities devoted
to one task, or a specific set of tasks. A common characteristic of IoT devices

1https://www.degetel.com
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is their pervasivity, that is, the possibility of deploying them in countless places
and applications. They enable the collection of huge amounts of data, which is
usually collected and analyzed. IoT devices include sensors and smart meters
that measure one single value or event (e.g. temperature, humidity, the opening
of a door, the failure of a mechanical component in an industrial machine) and
transmit it to a central server. The use of IoT in the industry is at the base of
the so-called fourth industrial revolution [23]. But in IoT we can also include
vehicles capable of communicating with other vehicles and the environment (e.g.
road infrastructure) [20]. IoT is also progressively entering private homes, with
home automation and intelligent appliances [45].

From an economic perspective, IoT technologies create a new market, whose
actors are device manufacturers, network and service providers, and application
developers. Public administrations also play a role in this: for example, in Brus-
sels public entities provide support for a smart city initiative2 and for companies
and start-ups to bring AI and IoT solutions to the market. There is also great
public interest in the next generation of IoT networks, based on 5G.

Alongside with the many opportunities, the deployment of IoT solutions
presents several technical challenges, from the non-interoperability of solutions,
to device obsolescence, to the computational challenges of big data analysis [4].
But also the pervasivity of the devices, the possible threats to privacy and se-
curity and their implications, even at international level, are key concerns for
developers, institutions and regulators [14, 16, 30].

Technical specifications of IoT devices and their interconnection encompass
the full stack from the design of the electronic components of a device to the
platform and application. Issues can happen at various levels of the IoT system
– physical, network, application. Among the several problems that affect IoT
systems, here we review the ones that concern the scope of Philéas, and we
compile the following list from the management and application perspective,
that is, from the central administration of the system.

2.2 Issues and challenges in IoT system administration

Device-related issues A very common situation, especially when using technolo-
gies that are inexpensive or with low capabilities, is the malfunctioning of a
device, which could fail in some of its parts (e.g. measuring a wrong value, being
unable to send or receive messages) or stop working altogether.

Network failure Similarly, a system can fail at the network level, e.g. because
of a malfunctioning gateway. Packets can also be lost simply because of a poor
network status, caused for example by bad weather conditions. In this case we
typically observe a deviation from the usual patterns for a group of devices
belonging to the same network, or connected to each other.

2https://smartcity.brussels/
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Malicious action IoT systems can be the target of criminals with the goal of
stealing information, or simply disrupt a service to cause financial damage. Sev-
eral kinds of attacks are possible on an IoT system, for example, Distributed
Denial of Service (DDoS) attacks can compromise a gateway, while the lack of
end-to-end message integrity check could be exploited to alter the payload [39].

However, from the perspective of this project, the effect of malicious action
results in issues that affect the system at the device or network level, or both. In
fact, for both network and device failure a mere log analysis is usually insufficient
to distinguish the causes of the failure, whether accidental or caused by malicious
actors, and additional knowledge is required to establish the causes of the issue.

System heterogeneity The huge variety in the technologies available makes it
very difficult to provide generalized solutions, even for the same kind of task.
As an example, and the case that concerns Philéas the most, there are several
communication protocols that can be implemented to transmit messages between
devices in a network, many of which are proprietary.

2.3 Anomaly detection for IoT system management

The complexity of IoT systems is a perfect application for AI technologies and,
in particular, data mining and ML techniques that can be used to process the
vast amount of data and metadata collected [26, 28, 46, 52]. A complete review
is beyond the scope of this project and of this work; here we limit our discussion
to an overview of the techniques that have been applied to monitor the state of
IoT systems from the data collected, notably anomaly detection.

An anomaly (or outlier) is an observation, or a group of observations, that
exhibits two characteristics: it differs significantly from the majority of other
observations, and it appears rarely in the dataset [5, 25, 27]. Anomalies can take
many different forms: the simplest way to define what an anomaly is is therefore
to define what normal observations (inliers) are, and to mark as anomalies all
the observations that cannot be considered inliers. The nature of the deviation
depends on the particular context and application. We can search for observa-
tions that deviate from the regular behaviour in the entire dataset; in this case
we are considering global anomalies. But anomalies can also occur with respect
to a subset of the data, and in this case we identify them as local anomalies.

Clustering and neighbourhood-based methods Clustering often is the first step
taken to make sense of the data collected. By associating related observations,
we can identify groups of devices that exhibit similar behaviour, for some suit-
able definition of similarity that takes into account relevant features. There are
however many possible similarity criteria, and many clustering techniques avail-
able, each one possibly entailing different outcomes. Popular techniques include
centroid-based algorithms, such as the k-means algorithms, where some obser-
vations are chosen as representatives (centroids) of the clusters they belong, and
the remaining observations are associated to the closest centroid. Another ap-
proach is based on density, where a cluster is composed by points that have a
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minimum amount of neighbouring points under a certain distance; in algorithms
from this class, such as DBSCAN, sparse points can be considered outliers. For
thorough reviews of clustering algorithms, we refer to [1, 48].

In the case of IoT log analysis, to cluster similar observations we usually need
to define a distance function based on a subset of the packet fields. For example,
we can group observations by the behaviour they describe, e.g. the number of
packets sent by each device in a certain interval of time. But we can also analyze
the aggregate of the packets sent by one device, or the devices of a specific client
or a certain geographic area.

A notion of proximity between observations is also at the base of the Local
Outlier Factor (LOF) algorithm, an anomaly detection technique based on the
notion of local density, that is, how close each point is to its k neighbours [8].
In a nutshell, LOF classifies as anomalies data points whose local density differs
from the local density of its neighbours. LOF is a generic technique that can be
applied to various tasks for which we can define a distance between observations.

One-class learning Another approach to anomaly detection is to have a model
learn only the “normal” behaviour; this corresponds to a classification task with
a single target class. Anomalies are then the observations for which the model
performs poorly. Techniques in this family include one-class Random Forests [24]
and one-class Support Vector Machines [11]. Isolation Forests exploits the low
frequency of outliers to isolate them in leaves of decision trees [33].

A family of artificial neural networks called autoencoders is another effective
approach to anomaly detection [51]. Autoencoders perform two subsequent ac-
tions: first they map (encode) the input to a reduced space of neurons, in order
to approximate the input; then they try to re-generate (decode) the input from
this approximation. During the training phase they effectively learn a noise-free
version of the original model, hence, in general, the reconstruction error will be
smaller for observations that match the input model relatively well, rather than
for observations that deviate significantly from the majority of the other points
in the dataset; the first ones can therefore be considered inliers, while the latter
will be identified as outliers.

Time series analysis As devices send packets to the central server either periodi-
cally or based on events, the data collected can often be modeled as multivariate
time series. A multivariate time series is an ordered set of k-dimensional vectors
X = {xt}t∈T where each vector xt = {x1

t , x
2
t , . . . , x

k
t } contains the values ob-

served at time t. In our case, the values are the values of the different features we
receive, or that we are interested to monitor in the given situation. Anomalies
in time series can take different forms. We can look for a point or a sequence of
points that deviates from the rest of the points in the time series (point outliers
and subsequence outliers), or for a time series that exhibits a different behaviour
from other time series in one or more features (outlier time series). Anomaly
detection in time series is a rich and active field of research, thanks also to the
huge importance of this task for the industry [41], and we refer to [6, 10] for
detailed reviews of anomaly detection techniques for time series.

BNAIC/BeneLearn 2020 60



6 A. Franzin et al.

Batch vs real time analysis vs prediction Depending on the context and the
specific applications, there are two possible ways of looking for anomalies in log
data, batch analysis and real time analysis. Batch analysis processes data about
past event, and is performed periodically or occasionally to discover anomalies
occurred in the past, e.g. in the context of forensic analysis. Real time analysis is
instead applied to the data as it arrives, or in small batches of recent data, and
is continuously performed to ensure that potential problems are immediately
spotted and taken care of. When a machine learning model is trained on the
data available, it can be used to predict the future status of the IoT system,
for example the reception of a packet, or the failure of a device or a network.
Prediction is always applied to one single instance of the desired target.

Domain expertise Domain expertise is crucial to properly understand and eval-
uate the results of a data analysis, as the data alone is often not sufficient to
fully understand a situation. In particular, in our applications the client needs
to be involved in the process and has to analyze the outcome.

3 The Philéas framework

3.1 Scope

In Philéas we implement algorithms to detect anomalies in IoT metadata, pro-
cessing logs of messages from different sources both in batch and in real time.
Philéas provides a framework that can be used not only as stand-alone software,
but also to develop specific solutions for different clients. Key elements in the
design of the framework are the separation between the data and the AI algo-
rithms and at the identification of common features in the various data sources.
Therefore, while we can provide algorithms tailored for specific cases, in general
we favour general techniques that can be applied in a variety of contexts. A spe-
cific application is then instantiated for each client, selecting the infrastructure
and the algorithms that best serve the specific needs for the tasks required. The
results of the anomaly detection task are meant to accompany domain expert
analyses, to obtain meaningful insights about the status of the IoT system.

3.2 Network protocols

We consider two of the most common options for the communication between the
devices and the central infrastructure, Sigfox [53] and LoRaWAN [13, 44]. Both
are proprietary technologies, developed in France and available mostly in Europe.
They operate in the ISM (Industrial, Scientific and Medical) band, at 867 −
869 MHz in Europe. The protocols have similar architectures: devices transmit
packages to gateway nodes, which in turn communicate with the network server,
devoted to manage the data for the various applications. The devices are not
associated to a specific gateway, but rather initiate a communication by looking
for an available gateway, and continue communicating with a responding one.
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Sigfox is a protocol designed to be simple and robust to interference. Its
packets contain only nine fields in total including the payload, with additional
information about the client, and only the device ID, transmission time and
RSSI of the network at the transmission as metadata usable for analysis on the
receiving end. It uses an asymmetric link for transmission and reception, so it is
a good choice in case of network of sensors that transmit infrequent data (e.g.
temperature sensors).

LoRaWAN (Long Range Wide Area Network) is the medium access control
and network layer protocol defined in the LoRa standard, designed for long
range, low power connectivity: a device can function for over eight years before
having to replace its battery. A LoRaWAN packet contains several metadata
fields additionally to the payload. These fields include information about the
gateway and the antenna, and for both uplink and downlink. LoRaWAN uses a
symmetric link, so it is a better choice in case of bidirectional communication.

For more technical details about the specifications of these two protocols,
we refer to their official documentations. At the moment we do not consider
alternative protocols such as 5G, GPRS or NB-IoT, but the Philéas application
is designed to be possibly extended to work with different packet formats.

To provide solutions as general and reusable as possible, we base our analyses
on the common fields of both the Sigfox and LoRaWAN packet formats. For
Sigfox, the relevant fields include, aside from the payload, the device ID, the
client ID, the timestamp, and the RSSI (Received Signal Strength Indicator), a
measure of the power of the radio signal, and thus on the quality of the network
at the moment of the transmission. Analyzing the content of these fields can
already provide several insights on the status of the IoT system. In addition to
this, LoRaWAN provides several other information about the network, such as
the uplink and downlink gateways, and the connection status, that can be used
for deeper analyses when needed.

3.3 Algorithms

Simple rule-based and statistical analyses are very effective in several scenarios.
For example, if a device did not send a message in the last x hours, or sent y%
more (or less) messages than the other devices in its network, it may considered a
problem. The values of x and y are to be determined by the specific application,
either as fixed values provided by the client or after a preliminary data analysis.
We can also compare the current behaviour of a device with its past behaviour,
to observe whether it changed significantly, according to some threshold values.

In IoT networks the chances of losing a packet are comparatively high with
respect to other network technologies, without this necessarily being related
to actual problems. Hence, point outliers in metadata, especially multivariate
(a single packet received or lost) are at high risk of being false positives. We
therefore focus on subsequence outliers and outlier time series, as indications of
possible persistent problems.

We use the k-means clustering to identify devices based on their transmission
behaviour. For the same task in a big data context we also implement a MapRe-
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duce version of the k-center clustering algorithm [9]. The distance function may
depend on the specific case, protocol and application, and can therefore be de-
fined with the user. We also use the Local Outlier Factor algorithm to identify
devices that have an abnormal frequency of messages, or an abnormal amount
of messages received.

While statistical and clustering methods cover most of the needs in our prac-
tical cases to characterize, respectively, individual and group behaviour of the
devices. However, one of the goals of this project was to investigate more ad-
vanced machine learning models for analysis of IoT metadata, for advanced
analyses of large batches of data, but also to replace manually-crafted rules and
to predict future issues at the device level. We implement autoencoder neural
networks, whose hyperparameters are to be set for each specific case.

3.4 Infrastructure note: exchanged place with Algorithms

The database used depends on the amount of data to be collected for each client.
We have the option of using the Hadoop infrastructure for managing big data,
and PostgreSQL and MongoDB as databases otherwise. Streaming data can be
collected using Kafka.

The algorithms of Section 3.3 are built on top of the common Python stack
of scientific libraries, based on Spark (Pyspark), Pandas and Scikit-learn for
data analysis, feature augmentation and machine learning tasks. We use Tensor-
Flow for implementing deep learning solutions, and Spark for big data analysis.
Whenever possible, we use the algorithms available in the Python libraries; we
however implement custom algorithms for statistical and time series analyses.

The interface for the application is built using Django and node.js. Commu-
nication with the backend is handled by REST services.

4 Use cases

Here we present two examples of issues tackled using the Philéas framework,
to showcase the set of algorithms we have currently available. As they refer to
specific situations of Degetel clients, the data and some of the specific details are
covered by non-disclosure agreements, and we will thus omit from the following
presentation any detail that may identify situations, clients or any other party in-
volved unless specifically authorized. We can however present the computational
problems, and the approaches we implemented to tackle them.

4.1 Quality of Service

The first case is about Shayp3, a Brussels-based startup that deploys IoT water
telemetry sensors to monitor water consumption in indoor locations. The sensors
measure the amount of water used and transmit this value to the central server

3http://www.shayp.com
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Philéas: Anomaly Detection for IoT Monitoring 9

using Sigfox packets, with a frequency of one packet every hour. Some packets
are lost, either singularly or in bursts: this normally happens due to poor network
conditions. Sometimes packets from a certain device may disappear completely,
in case of a faulty device or external intervention (e.g. a device is misplaced after
being accidentally hit). To avoid too many false positives, we do not consider
a single lost packet as an anomaly; in fact, this can situation can happen for
several reasons, and it is not considered problematic in itself. However, two or
more consecutive expected packets lost are considered as an anomaly to note.

The dataset for the analysis we report includes anonymized logs of 500 devices
for one year of activity, each observation corresponding to one Sigfox packet
received (∼ 2.6M packets in total). No information available regarding users is
available, and the payload is encrypted. Given the simplicity of the transmission
protocol, the relevant information in each packet is only the device ID, the RSSI
of the network and the timestamp of the message. The expected periodicity
allows us to detect the loss of one or more packets by measuring the time elapsed
between two consecutive packets received from the same device.

Monitoring the status of the network and of the devices can be done, in large
part, using simple time series and statistical analyses, analyzing the time of each
message, and the associated RSSI. We implement rules to detect devices with
an anomalous behaviour, with respect to both the other devices in the network
and the device expected behaviour.

We use this case also to describe our autoencoder approach to track lost
packets. The relevant information for each message is: (i) the device ID, (ii) the
RSSI value measured, and (iii) the elapsed time since the previous packet from
the same device. Starting from these information, for each device we build two
sequences, Rn with the n last RSSI values measured for the device (normalized in
the [0, 1] interval, relative to the entire dataset), and Tn, the (normalized) elapsed
time between each of the last n packets received. For the autoencoder to learn the
“normal” behaviour, we include in the training set only data that corresponds
to packages that have at most one packet lost among its predecessors.

The input features for the autoencoder are the two sequences Rn and Tn.
The autoencoder has a symmetrical architecture with an input and an output
layer of 2n nodes, a first and last hidden layer of n nodes and a third and fourth
hidden layer of ⌈n/2⌉ nodes. In our experiments we used n = 5, for a total of
ten input features. More precisely, the network architecture is the following one:

input layer 10 nodes with ReLu activation;
first hidden layer fully connected, 5 nodes, ReLu with ℓ1 regularization;
second hidden layer fully connected, 3 nodes, ReLu activation;
third hidden layer fully connected, 3 nodes, ReLu activation;
fourth hidden layer fully connected, 5 nodes, ReLu activation;
output layer fully connected, 10 nodes, ReLu activation.

The autoencoder then computes the reconstruction error of its input. Sequences
corresponding to packets considered having normal behaviour have a lower re-
construction error than packets belonging to sequences where many previous
packets have been lost. We can thus fix a threshold for the reconstruction error
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network status, with the main statistics and a list of the devices that lost too
many packets, while the second one is a plot that reports, for a given day, the
hourly amount of packets expected but not received.

4.2 Distributed Denial of Service

The second case we present comes from a French company, a major actor in
the local IoT market with thousand of clients throughout the entire country.
They deploy LoRa sensors for a variety of tasks; with no regular frequency,
these devices transmit the information they collect to the central server via
LoRaWAN packets. The company requested an analysis of their logs, following an
occasional service failure experienced by several of their clients on a certain day
da, whose devices were unable to connect to the network. The company reported
that, overall, nearly 45% of the connections failed, contrarily to a circa 1% of
probability of connection failure under normal circumstances. The hypothesis to
verify is that this was a case of DDoS [38]. Here we report the analysis on the
beginning of the attack.

Due to energy considerations, devices in LoRaWAN networks are not con-
tinuously connected to the network, but rather they send a join request to the
network when they have to transmit data. If the request is accepted by the server,
the device will be assigned a private token to be used during the communication,
that will be checked by the gateway. The connection is closed when they stop
transmitting, or if they get disconnected from the network. Join requests, both
accepted and rejected, are normally received and stored by the central server.
Gateways are configured to cap the number of join requests they can handle in a
given amount of time; when the limit is exceeded, the gateway will reject all the
new incoming join requests, to preserve the central server from the additional
load. The recommended practice is therefore to minimize the number of con-
nections, and to avoid repeated retries when a join request fails or in case of a
network failure, in order to minimize the load on a network. Unfortunately, IoT
protocols only enforce limited secure practices by design, so it is relatively easy
for a malicious actor to disrupt a service by making some devices perform an
excessive amount of join requests. When this exceeds the network capacity, also
non-infected devices are impacted, experiencing more join failures than usual.

We were provided six months of anonymized LoRaWAN logs, for a total of
approximately two terabytes of data. The LoRaWAN packets are composed of 12
downlink fields and 60 uplink ones, only one of which is the actual payload; the
other ones include many accessory information that is not necessarily useful in
many contexts. Moreover, several fields have been anonymized before giving us
access to the data, so only partial information was available to us. The relevant
fields for this task are the device ID, the client to which the device is associated,
the timestamp, and the success status. The first step is to count the packages
received by each device, and by the devices of each client. We use Spark to
aggregate records in the dataset by device ID, day, and client, to count daily
connections. Additionally, the aggregated data is now manageable without big
data algorithms or technologies.
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Fig. 2. Number of connections and connection error percentage for the main fifteen
clients, on days da (the day the DDoS attack started, left plot) and da + 1 (when the
attack continued, right plot). Each circle represent a client, the size of the circle is
proportional to the number of devices controlled by that client. The colors indicate the
outcome of the Local Outlier Factor analysis: in blue the clients that are considered
inliers, in orange the client with anomalous behaviour (conventionally called Alpha).

The analysis by client shows clearly how the attack on one client impacted the
other clients of the network. In Figure 4.2 we report the number of connections
(on the y axis) and the error percentage (on the x axis) experienced by each
client. The client that we call Alpha is the one hit by the attack and on day da
it starts requesting an unusually high number of connections; on this day, the
network load is still under control, and the other clients do not experience any
particular issue. However, as the attack continues on day da+1 and the network
load increases to an excessive level, not only Alpha experiences a higher ratio
of rejected joins, but also other clients become affected. In fact, all the clients
experience, to various extents, an increase in the number of rejected connections.
A consequence is the need for the devices to issue more join request than usual,
in order to be able to transmit the information, even if, respecting the protocol
recommendations, they do not issue nearly as many new join requests as the
compromised client. The same outcome is observed with a Local Outlier Factor
on the number of connections, normalized in the [0, 1] interval, which confirms
the abnormal behaviour of the devices of client Alpha.

This ex-post analysis serves also as a blueprint for the periodic monitoring
of the network status. We can in fact periodically aggregate the data and spot
anomalous behaviour by one or more clients; thanks to the reduced size of the
aggregated dataset this can be done almost in real time.

5 Conclusions

With the growing interest in IoT technologies and applications, there is also a
growing request in the market for data-based solutions to monitor IoT services.
We introduced Philéas, a framework to analyze IoT logs to find anomalies in the
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metadata, as an indication of potential problems in an IoT network. In Philéas
we implemented several machine learning and anomaly detection techniques, and
we have applied them to real-world cases of Degetel clients.

The framework can be used to implement custom solutions for clients with
particular requirements; to this purpose, and depending on the requests, we
are also going to include additional anomaly detection techniques, and network
protocols.
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“PHILEAS: smart monitoring par détection de comportements anormaux ap-
pliquée aux objets connectés”. M. Wattez contributed to the graphic interface
and part of the implementation of the Philéas framework. We thank Shayp for
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Abstract. We present neatures, a computational art system exploring
the potential of digitally evolving artificial organisms for generating aes-
thetically pleasing artifacts. Hexapedal agents act in a virtual environ-
ment, which they can sense and manipulate through painting. Their cog-
nitive models are designed in accordance with theory of situated cogni-
tion. Two experimental setups are investigated: painting with a narrow-
and wide perspective vision sensor. Populations of agents are optimized
for the aesthetic quality of their work using a complexity-based fitness
function that solely evaluates the artifact. We show that external eval-
uation of artifacts can evolve behaviors that produce fit artworks. Our
results suggest that wide-perspective vision may be more suited for max-
imizing aesthetic fitness while narrow-perspective vision induces more
behavioral complexity and artifact diversity. We recognize that both se-
tups evolve distinct strategies with their own merits. We further discuss
our findings and propose future directions for the current approach.

Keywords: aesthetic evaluation · artificial intelligence · artificial life
· autonomous behavior · computational creativity · embodied agents ·
evolutionary art · neural networks · situated action · situated cognition

1 Introduction

Computational systems that produce artworks with high levels of autonomy have
always provoked discussion about the definition of art and creativity. Researchers
and artists working in the field of evolutionary and generative art cede control to
autonomous systems that produce artworks, often intending to eliminate human
intervention where possible [17]. Digital evolution is an established algorith-
mic process that has proven very capable of innovation [18]. In art and design,
appropriate implementation of this technique can aid the generation of novel,
valuable and surprising artifacts [4][2] that may be deemed creative by unbiased
observers [8]. It has also been essential in the field of artificial life (a-life) [26]
where researchers have been consistently surprised by creative solutions invented
by artificial organisms evolving in computational environments [28]. Naturally,
the process of digital evolution merely imitates life itself. The biological mecha-
nism of natural selection is known to find and cause inventive adaptations that
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enhance the survival and reproduction of organisms [15]. Consequently, these
may lead to the appearance of design without a designer [10]. Adaptations may
include changes in behavior. We aim our attention at a particular behavior in
some non-human organisms, namely the creation of artifacts.

Several species in the natural world are known to decorate and produce struc-
tures that resemble visual art in the sense that they are intended to be attractive
to potential mates. This structure creation is an important behavioral character-
istic of male bower birds [12] and white-spotted pufferfishes [31]. In this paper,
we explore whether artificial organisms could adapt to similar, but digitally in-
duced pressures as a consequence of constructing artifacts. The following sections
briefly discuss some challenges related to building such a computational system.

1.1 Computational aesthetic evaluation

Early examples of evolutionary art include the highly influential work of Sims [41]
and Latham [47], who used genetic algorithms to mutate symbolic expressions
for the composition of unpredictable yet interesting visual shapes and patterns.
Both adopted a top-down approach that relies on human aesthetic judgment for
the evaluation of artifacts using an interactive genetic algorithm (IGA). This
technique facilitates easy exploration of large parameter spaces [44] but suffers
from significant limitations: (1) IGAs rely on human evaluation at every itera-
tion and so suffer from the fitness bottleneck [46], and (2) human fatigue and
inconsistency make it difficult to capture universal measures [44]. Attempts to
overcome these limitations have included massively multi-user systems [39] and
the application of machine learning to capture user preferences [33].

Challenges in IGA helped inspire the research field of computational aes-
thetic evaluation (CAE), where people seek computational solutions for the as-
sessment of human aesthetics [23]. Machado and Cardoso [29] created NEvAr,
an autonomous system that evolves Sims’ symbolic expressions with an auto-
mated evaluation procedure for images that focuses exclusively on form. Here, a
speculative fitness function inspired by the study of information aesthetics [35]
was designed which favors images that are “simultaneously, visually complex
and that can be processed (by our brains) easily”. In the science of aesthetics,
NEvAr ’s fitness function indicates a formalist theory as it proposes aesthetic
experience relies on the intrinsic beauty of the artifact. In contrast, a conceptual
theory relies on other factors that may be more important for aesthetic prefer-
ence like socio-cultural contexts of the work and the previous experience of the
artists and observers [40]. In a more recent publication, Redies [36] proposes a
model of visual aesthetic experience that unifies these two theories. Ultimately,
there is currently no agreement on which paradigm offers the most effective
computational framework of human aesthetics.

1.2 Embodiment

Theorists in situated cognition view the environment as highly significant to
driving human cognitive processes. Clark and Chalmers [7] suggest that the
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environment directly influences an agent’s behaviors as part of a two-way in-
teraction between action and perception. Here, embodiment is key because it
allows us to manipulate it to our needs. Biological brains have evolved to take
advantage of the environment by offloading cognition to it through the body.
Simultaneously, our visual systems evolved to rely on it more. This perspective
supports the view of externalism, in which the cognitive process is considered
something that occurs in- and outside of the mind [7]. In this context, embod-
iment is key to the creation of art and can be imagined as a feedback loop of
action and perception occurring through a body. Brinck [5] states that the pro-
duction (and consumption) of visual art can be accounted for by the theory of
situated cognition [6]: ”Artist and canvas form a coupled system. Artistic prac-
tice starts with gaze, and then comes the gesture that accomplishes itself when
the artist is in touch with the piece [they are] working on.”[5]

Experiments in the use of embodied artificial organisms and situated cogni-
tion for computational art and creativity have largely been unexplored. Thus,
we present neatures: a prototype for an autonomous art system that simulates
artificial organisms capable of producing visual art in their environment.

2 Related work

There have been several interesting art and research projects involving the use
of embodied agents to create visual art. Jean Tinguely experimented with me-
chanical drawing machines in the 50s, exploring notions of automated artists and
artificial creative processes [13]. Influences to his work can be seen in the field
of swarm painting, which involves the simulation of agents supplied with some
form of cognition producing emergent artworks. Robotic Action Painter [34] is
an autonomous abstract art system based on behavioral studies of ants and other
social insects. An artwork is created by employing several small wheeled robots
that leave colored lines (pheromone) as they travel. A color detection sensor
on each robot recognizes these lines in the environment and triggers specified
behaviors for particular colors—a process analogous to stigmergy ; a form of self-
organization [14]. The result is a painting with chaotic structures that are free
from preconceptions and merely represent the actions themselves. McCormack
developed similar experiments using biological processes of niche construction to
enhance the diversity and variation of agents’ behaviors in his art system [32].

Drawing machines that take a more anthropomorphic approach can be clas-
sified as robot painters. eDavid [11] is an industrial robot that simulates the
human painting process using a visual feedback loop to explore painterly ren-
dering on a real canvas. Explorations in expanding its artistic skill demonstrated
the possibility of expressing a given collection of images in a different style [48].
With neatures, we take inspiration from the flexibility of robot painters and
the emerging complexity of swarms to explore the effects of aesthetic selection
pressures in an evolutionary art system.
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3 Implementation

Neatures1 is a prototype computational visual art system that was developed in
an attempt to employ artificial organisms for the production of visual artifacts.
The current implementation is heavily inspired by the seminal work of Sims
(1994), Evolving Virtual Creatures, in which a genetic algorithm was used to
guide the evolution of specific abilities such as locomotion and jumping. Nea-
tures’ artificial organisms ‘live’ in three-dimensional space and are subject to
physically plausible simulation. This is achieved using the Bullet physics engine
[9]. The software comprises of a controller server which stores the population and
commands the complete evolutionary process. A simulator client can connect to
a controller and receive queries for queued rollouts. This component features a
graphical user interface, allowing the user to observe the virtual organisms in
real-time. The following sections briefly cover the system implementation.

3.1 Agent morphology

Virtual organisms situated in physically plausible environments are subject to
strict laws of physics and, like real organisms, require an appropriate body to
fulfill their purpose. Designing such a body is a difficult task, and perhaps best
suited for an evolutionary process to solve. Sims [41] used a genotypic encod-
ing of nodes and connections for the morphology of his creatures, and genetic
operators, allowing for the evolution of morphology alongside control policy. In
this system, a genotypic encoding scheme is used to generate a hexapod at the
start of a simulation and remains fixed. The reason for this is that evolutionary
optimization of morphology dramatically increases the complexity of the search
landscape and is incompatible with fixed-topology neural network architectures.

Body Limb

Fig. 1: Agent morphology genotype (left) and phenotype (right).

Each element stores some information about their phenotypic transforma-
tions such as size, attachment points, and node or joint type. A phenotype
generation algorithm recursively traverses the graph and builds a hierarchical

1 Neatures is open-source and available at https://github.com/lshoek/creative-evo-
simulator
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structure of boxes connected to each other by joints. Fig. 1 depicts the morphol-
ogy encoding and phenotype of a hexapod. The algorithm in the current work
was implemented after Krčah’s example [25] with some alterations tailored to
suit this work’s purpose. One notable difference, for instance, is that we use a
single degree of freedom per joint for simplicity.

3.2 Agent control policy

In every simulation rollout, agents are tasked to produce an artifact in their en-
vironment. In order to achieve this in neatures, we chose to implement a painting
system. Each agent is equipped with a single brush-type node capable of apply-
ing virtual ink drops to the canvas; a specified surface area in the environment
that the agent can sense and manipulate. Four invisible walls are located at a
specified distance from the canvas edges to prevent agents from moving too far
away from the center. Ink is only released under the conditions that the brush
node is in contact with the canvas, and the agent has decided to activate it.

An agent’s decision-making process and behavior are determined by its con-
trol policy. This is defined by a neural controller that continuously accepts sen-
sory data as input, and based on this data, outputs a set of activation values.
Agents sense their environment through two types of sensors: (1) a propriocep-
tive sensor, implemented by tracking the current joint angles and storing these
in a ∈ IRj , where j is equal to the number of joints in the agent’s morphology
and (2) a vision sensor capturing a 64x64px grayscale bitmap representation of
the current canvas’ content. The data of both sensors is appended to form an ob-
servation to be fed to the neural controller at regular time intervals. The physics
engine and control policy are updated 60 and 20 times per second of simulated
time, respectively. Fig. 2 presents the complete cognitive model of an agent.

The neural controller involves two cognitive modules; a vision model V for
processing visual data inside the incoming observation, and an action model C
to generate the agent’s next action. V is a convolutional variational autoencoder
(CVAE), pre-trained to compress the canvas data to a latent vector z ∈ IR32. C

Joint
angle
vector
a

Observation

Action controller C
(Linear Model)

z

Input
vector

Agent
t+1

Agent
t

Effector
vector

Vision model V
(VAE)

CPG

Canvas
Neural controller

Fig. 2: Cognitive model of an agent.
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is a simple linear model that takes as input a combination of latent vector z, a
joint angle vector, and an additional value to stimulate continuous movement.
Compression of the visual data allows the action controller to be kept small,
which alleviates the credit assignment problem in difficult reinforcement learning
(RL) tasks and tends to iterate faster [19]. The output layer of C uses a tanh
activation function to output to produce a vector of effector values, including
target joint angles used to update the motor parameters of the agent’s joints and
a value indicating the stroke width of the brush. Finally, a stimulation output
value connects to a central pattern generator (CPG) after which a feedback
connection to the corresponding action model input is made for the next time
the neural controller is queried [24]. This minimal recurrent network structure
is set up this way to evoke changing joint angle outputs. Without it, the agent
would cease to move in cases where its observations remain unchanged over
multiple frames and its body incidentally has zero momentum. Additionally,
as sensory input drives neural excitation, it grants C control over the agent’s
movement speed, which could bring about more interesting behaviors. Section
4.3 describes the training procedure for V and C.

4 Experiment

We carry out two experiments where an artificial organism is evolved by optimiz-
ing for the aesthetic quality of its artifacts. The artistic medium of expression
chosen for this task is painting. The main reason for this is that there exists a
multitude of interesting theories and evaluation techniques of visual human aes-
thetics—suitable for two-dimensional content—that could be pursued to design
an acceptable fitness function [16].

Fig. 3: The neatures simulator showing an agent painting.

As stated in Section 3.1, we decided to exclude morphology from evolution-
ary optimization, meaning we must formulate an appropriate body design for
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the current experiment ourselves. We take inspiration from behavioral robotics
research, where it has long been common practice to use biologically based robot
designs to study artificial organisms [1]. As a matter of course, the insect-like
hexapod was chosen for the current task. This design is a popular benchmark
that we suppose will allow for an adequate degree of flexibility required to ex-
plore the possibilities of the virtual environment. Fig. 3 shows a screenshot of
the agent as it appears in the simulator client of the system.

4.1 Setup

The following is a brief description of the realized experiments. In the first setup,
the agent is supplied with a wide-perspective vision sensor. This is defined as a
64x64px grayscale bitmap representation of the environment that is equal to the
size of the canvas. The orientation of this representation is at all times aligned
with the facing direction of the agent and centered around the point where it
last touched the canvas with its brush node. Fig. 4a shows an example of how
the canvas is sensed with this perspective. The second setup supplies the agent
with a narrow-perspective vision sensor, encompassing 6,5% of the canvas area
as shown in Fig. 4b.

(a) (b)

Fig. 4: The mapping from canvas (left) to visual field (right), marked in red, for
wide-perspective (4a) and narrow-perspective (4b).

The vision capabilities of the agent exist in a separate conceptual space from
the one it is situated in. Agents’ visual capabilities exist in artifact space, whereas
their neural controllers output actions in effector space. The former is a two-
dimensional representation of the environment, cultivated by the agent itself.
The latter relates to objects in the three-dimensional virtual environment. Other
than muscle memory (the action controller parameters), an agent has no other
capabilities of memorization. As a result, the environment is the only cognitive
resource to the agent by which an approximate model of situated cognition is
realized. The key idea to this experiment is that, under the given conditions, a
mapping between these two may be learned. If successful, the creature would be
able to produce an aesthetically pleasing artifact in artifact space by means of
its motor function in effector space.
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4.2 Measuring aesthetic quality

After a rollout has ended, the resulting artifact is queued for fitness evaluation.
In our computational environment, the fitness function is a proxy for natural
selection pressures that cause the evolution of adaptations [15]. As outsiders
to this virtual world, we can design this function externally, and observe what
behaviors emerge from evolutionary optimization. Taking inspiration from some
animal species’ mate selection indicators that are attributed to external artifacts,
we intentionally ignore any behavioral aspects of an agent’s existence. Our fitness
function is designed to evaluate images in accordance with speculative visual
aesthetic theory, essentially assuming the role of an art critic.

To measure the aesthetic quality of an artifact, we use a metric closely related
to Birkhoff’s [3] formalist aesthetic measure, defining the formula M = O/C,
where M is the aesthetic effectiveness, O is the degree of order and C is the
degree of complexity. Birkhoff theorizes that aesthetic response to an object is
stronger when the degree to which psychological effort is required to perceive
it—induced by its complex features—is met with a higher degree of tension be-
ing released as the perception is realized—originating from orderly features such
as symmetry and self-similarity. This formula has been disputed early and is
generally regarded as inaccurate [49]. Scha & Bod [37], for instance, note that it
penalizes complexity too considerably and is better suited as a measure of the
degree of self-similarity. Galanter [16], however, notes that at least two aspects of
Birkhoff’s work remain legitimate today; the intuitive connection between aes-
thetic value and order/complexity relationships, and the search for a neurological
base of aesthetic behavior. These aspects are reflected in the fitness function of
Machado & Cardoso [29], defined in Eq. 1. Inspired by information aesthetics
[35], Machado & Cardoso speculate an image’s intrinsic aesthetic value to be
equal to the ratio of image complexity IC to processing complexity PC.

rewardaesthetic =
IC

PC
(1)

PC is measured at two temporal instances (t0 and t1) in the time it takes to
perceive an image and provide Eq. 2. The processing complexity is maximized
as PCt1 and PCt0 approach each other.

PC = (PCt0PCt1)
a

(
PCt1 − PCt0

PCt1

)b
(2)

In order to find PCt0 and PCt1, we calculate the inverse of the root mean
square error (RMSE) between the original image i, and the same image after
fractal compression Fractal(i), as shown in Eq. 3.

PCtn =
1

RMSE(Fractal(i), i)
(3)

Machado et al. [30] compared several complexity measures with human rat-
ings across a selected set of images in five distinct stylistic categories. Among

BNAIC/BeneLearn 2020 78



Evolving Virtual Embodied Agents using External Artifact Evaluations 9

the results of their feature extraction experiments, their JPEG-Sobel method
was found to correlate the most with human ratings, especially those related to
the abstract artistic category. We calculate IC following this method as shown
in Eq. 4. First, the Sobel [42] edge detection operator is applied to i horizontal
and vertical directions, after which the resulting gradients are averaged. Then,
JPEG compression is performed on the edges. In the dividend, size defines the
total number of bytes required to store the image data.

IC =
RMSE(Sobel(i), JPEG(Sobel(i)))

size(Sobel(i))size(JPEG(Sobel(i)))
(4)

Taylor et al. [45] note the fractal qualities of late-period action paintings by
Jackson Pollock and suggests their fractal dimensions are correlated with their
aesthetic qualities. Therefore, we decided to parameterize Eq. 2 using a = 0.6
and b = 0.3, increasing bias towards artifacts with more orderly features with
respect to the reference implementation [29]. We argue that this suits the current
experimental setup by countering excessive levels of image complexity in the
artifacts due to the generally chaotic nature of agents’ behaviors that generate
complex and incidental painting patterns by default.

In early experiments, we found that additional encouragement to act through
an easily attainable coverage reward could help agents to advance faster in early
generations. This has the added benefit that a minimum specified amount of
content is imposed on the artifacts. Eq. 5 defines rewardcoverage(x), where x
is the mean of all normalized pixel intensities of the artifact and p is the peak
coverage rate. It is essentially a smooth interpolation between x and p, ensuring
a result of 1 when x ≥ p.

rewardcoverage (x) = 1− sin
(
π

1
px+ 1

2

)4

(5)

with initial condition

x = min(x, p) (6)

In our experiments, we use p = 0.0625, meaning that the maximum coverage
reward is already reached when 6,25% of the canvas area is painted. Finally, the
total artifact fitness is calculated as defined in Eq. 7. This shows the aesthetic
reward is proportional to the coverage reward until peak reward p is reached,
thus penalizing paintings that have little content. Table 1 presents a set of images
and their fitness values.

fitness = 100 rewardcoverage + rewardaesthetic × rewardcoverage (7)

We find these results to be satisfactory for our purposes. Although the fitness
function is arguably too generous on Gaussian noise (Table 1d), such an artifact
is practically impossible for an agent to produce. The Pollock-snippet (Table 1e)
is evaluated far more positively and represents a more plausible result.
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Table 1: A set of images and their fitness: (a) perfect symmetry, (b) an early-
generation artifact with little variability in stroke width, (c) an early-generation
artifact with high variability in stroke width, (d) Gaussian noise, (e) a contrast-
enhanced snippet of No. 26A: Black and White by Jackson Pollock (1948).

(a) (b) (c) (d) (e)

Fitness 101.2 116.2 145.9 399.5 871.5
Coverage 27.7% 15.5% 12.4% 18.2% 46.0%
IC 0.0697 0.4042 0.8046 44.269 48.443
PC 0.0561 0.0250 0.0175 0.0148 0.0063

4.3 Training procedure

Before any control policies can be evolved, visual model V must be pre-trained
to discern between visual observations. First, 20,000 artifact samples (256x256
grayscale bitmaps) were collected in a preliminary run using an untrained visual
model V . Then, a new dataset was generated by applying random affine trans-
formations to each collected sample. This new dataset is more representative of
an agent’s visual observations. Finally, using the updated dataset, V was trained
to encode visual observations into latent vector z ∈ IR32 for 200 epochs.

Agents’ control policies are optimized through evaluation of the quality of
their work, rather than the means by which it was achieved. This indirect cor-
respondence between goal and action may reduce credit assignment accuracy
of gradient-based numerical optimization algorithms as adaptations to action
controller C could have unanticipated effects on an artifact’s fitness. Therefore,
gradient-free methods such as evolution strategies [38] might be best suited for
solving this problem. Neuroevolution methods have a long history of success with
evolutionary robotics and have recently increased in popularity as they have been
found to perform considerably well on deep RL tasks [43]. With this in consid-
eration, we chose covariance matrix adaptation evolution strategy (CMA-ES)
[20] for the optimization of C’s parameters. Evidence shows that the algorithm
performs relatively well on deceptive landscapes or sparse-reward functions up
to a couple of thousands of parameters [22]. We use an open-source Python
implementation of the algorithm by Hansen [21].

At the start of every evolution process, the weights of every action controller
C in the population are randomly initialized with µ = 0 and σ = 0.1. A popu-
lation size of 32 is used, where each candidate’s behavior is determined by their
corresponding C, comprising 658 trainable parameters each. Every generation,
one rollout is performed per agent and results in 32 artifacts. A rollout is defined
as 240 seconds of simulated time an agent spends in the environment. Evalua-
tions occur immediately after each rollout in a separate process. After all rollouts
and evaluations are finished, CMA-ES uses the collected fitness values to update
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each candidate’s action controller parameters for the next generation. Both ex-
periments are performed using an evolutionary process of 350 generations.

Our training setup marks several notable limitations. Foremost, the experi-
ments are carried out separately on two mid-range laptops (i7-7700HQ/GTX1050
and i7-8750H/GTX1070), each running a single simulator client and controller
server at the same time. The most significant bottleneck comes from the frac-
tal compression procedure required for each artifact evaluation. In the current
setup, we simulate two populations of 32 candidates for 350 generations and
takes about 40 hours to complete. More reliable results could be collected by
increasing the population size and averaging fitness over multiple rollouts for
a more representative metric of the agent’s general painting strategy. This is
however outside of the scope of this research.

Fig. 5: Fitnesses of the narrow- (left) and wide-perspective populations (right).

5 Results

Fig. 5 presents the fitness results of the narrow- and wide-perspective vision ex-
periments. Here, we see that the narrow-perspective population’s mean fitness
starts with a steep positive trend and converges towards a local optimum before
the 50th generation. The wide-perspective population’s mean fitness improves
gradually up to around the 100th generation before a local optimum is reached.
We also see that the wide-perspective population is generally about 150 points
ahead of the narrow-perspective population. From these results, it is evident that
the wide-perspective population performs better in terms of fitness. However, it
barely shows any signs of improvement after a local optimum has been reached,
until the final generation of the simulation. This is unlike the narrow-perspective
population, which shows a slight upward trend around the 300th generation, and
some new best-ever artifacts of the population. Table 2 presents the highest-rated
artifacts of both experiments along with some key statistics. Almost every ar-
tifact shows a clear trajectory on the canvas that is telling of the strategy that
was used to produce it. Fig. 6 below shows the highest-rated artifacts of the first
64 generations of both populations. We see that the sort of artifacts produced by
both populations can easily be distinguished from approximately the 40th gener-
ation. From there on, we see that nearly all artifacts of the wide-vision population
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Table 2: The highest-rated artifacts of all generations of wide-perspective and
narrow-perspective populations and their key statistics.

Pers. Fitness Cov. IC PC Gen.

Wide 401.05 36.05% 2.8339 0.0094 194
Narrow 251.82 21.33% 1.7714 0.0116 335

Wide Narrow

indicate a circular movement strategy, with little diversity among paintings. The
fitness results and artifacts of this population show that this strategy is further
exploited in subsequent generations, likely because of its effective contribution
to maximizing fitness. In contrast, the narrow-perspective population struggles
to escape a local optimum early on but demonstrates far more diversity among
its artifacts in all generations. This suggests that potentially fit strategies are
being explored rather than being exploited.

Fig. 6: The best artifacts of the first 64 generations (top-left to bottom-right)
of the narrow- (left) and the wide-perspective population (right).

The discrepancy between the fitness results and the type of artifacts pro-
duced by both populations led us to believe that coverage and fitness may be
strongly positively correlated. To investigate, we plotted coverage against fit-
ness (Fig. 7) and observed that coverage is an accurate predictor of fitness in
the wide-perspective population, but not necessarily for the narrow-perspective
population.
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Fig. 7: Mean coverage and fitness in narrow- (left) and wide-perspective popu-
lations (right).

6 Discussion

Our results of the current experiment demonstrate a notable distinction between
the narrow- and wide-perspective setup. In our experiment, we observe that vir-
tual organisms with narrow-perspective vision trigger explorative search of the
fitness landscape by the evolutionary algorithm and demonstrate more complex
and distinct behavior. We also see that this is not necessarily in the interest of
maximizing fitness. One explanation for this could be that relatively small adap-
tations to a narrow-perspective controller’s weights lead to greater variations in
the emerging painting strategy. In the agent’s cognitive model, perception and
action are closely coupled together. Therefore, distinct actions may be more likely
to be triggered when visual observations are more volatile, as is the case with
the narrow-perspective agents. This is in line with Brinck’s [5] argument that art
creation is a situated activity, noting that what the artist perceives is directly
transformed into action. We further observe that narrow-perspective agents gen-
erally appear more sensitive to the environment in their painting strategies than
wide-perspective agents. Narrow-perspective agents show more effective correc-
tive behavior such as turning near the edge of the canvas. This is not as apparent
in wide-perspective agents who barely appear to discernibly change their behav-
ior near edges. Little response to edges is likely induced by the exploitation of
circular movement patterns—evidently an effective strategy for painting highly
fit artifacts. We further think that the widespread coverage of paint in the en-
vironment reinforces an agent’s behavioral pattern. This may be due to the
relatively poor compression quality of global features in visual observations of
developed circular patterns, leading to similar encodings of z. Incidentally, this
fact may have greatly contributed to finding the circular movement strategy.

From our observations, we theorize that volatile visual information, as demon-
strated by the narrow-perspective experiment, considerably complicates the shape
of the fitness landscape. For instance, a consistent circular movement strategy
would be much more difficult to sustain over the length of a rollout, and over
multiple generations, with narrow-perspective vision than with wide-perspective
vision. Even more so, this automatically concerns any potential strategy. Al-
though volatile visual information may impede the evolution of consistent ac-
tion and perception, it does have creative merit in the sense that it elicits greater
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behavioral complexity in agents. Hence, the narrow-perspective population has
explored the greatest artifact space. This is demonstrated in Fig. 8 which presents
two random selections of artifacts created in both populations.

Fig. 8: Two random selections of artifacts drawn from all of the narrow-
perspective population (left) and the wide-perspective population (right).

Considering our evaluation procedure; if we, hypothetically, consider Pol-
lock’s work as an aesthetic benchmark for this system (Table 1e), we consider
the current fitness function helpful at guiding agents’ technique towards this
aesthetic up to a certain point. Fig. 7 however suggests a possible perverse in-
stantiation problem; at least one strategy exists in which coverage can be ex-
ploited to maximize fitness. However, we believe an adjustment to the fitness
function would be premature. This is because, as the fitness function is based
on complexity, coverage cannot be positively correlated with fitness as it ap-
proaches 50%. The highest recorded coverage of all artifacts in both populations
is 36%, whereas the coverage of our Pollock example (Table 1e) is measured at
46%. We are confident that under the current time pressure of 240 seconds, it
is physically not possible for agents to cover a significantly greater part of the
canvas. Therefore, we believe that agents should be assigned sufficient time so
that 50% coverage could be achieved. After this is explored, we believe that a
worthwhile addition to the fitness function would be a novelty reward term to
overcome local optima by encouraging exploration [27].

In our experiment, we see that a proxy for selection pressures based in aes-
thetic properties of an external artifact can evolve a virtual organism with some
success. Our agents’ artificially emergent and autonomous behaviors resemble
those of simple biological organisms in some ways on a superficial level and
are rather interesting to observe. Whether some of the resulting artifacts are
aesthetically pleasing is up to the beholder. Their chaotic patterns and compo-
sitions certainly parallel abstract expressionist action paintings to some degree.
The agents’ paintings share an interesting connection to this art movement as
all brushstrokes represent nothing but the actions themselves. With that, one
could argue for their artistic value.
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6.1 Future work

We briefly propose future directions for the current research. Foremost, the sys-
tem would highly benefit from a more robust visual model, as emphasized by
the poor reconstruction quality of wide-perspective visual observations. This can
be achieved by using a larger dataset of intermediate visual observations. Fu-
ture work could assess whether granting a virtual organism continuous agency
over its visual perspective, approximating the cognitive process of attention, is
a worthwhile approach. This feature is trainable and could explore the nuance
between the benefits of the demonstrated visual perspectives.

The morphology and environmental setup we chose for the task of painting
is by no means the most suitable. We recommend that future work in embodied
agent art should keep exploring the evolution of morphologies. This prevents
authors from making predisposed choices about the most suitable body for a
given task. A significant downside to this is that it requires a flexible network
structure for the action controller model that is significantly more difficult to
train. A search algorithm for appropriate morphology choice is another separate
topic that could be further explored in the context of art-producing artificial
organisms [27]. Furthermore, agents in the current work are limited to a single
type of brush, paint color, and environment to explore. Therefore, future exten-
sions could try implementing physically based painting systems, color palettes,
and varying environments, each of which could bring about interesting new arti-
facts and behaviors. Ultimately, painting is only one method of artistic practice,
and by no means the most suitable for embodied agents to practice. Computa-
tional organisms and environments allow for other artistic modes of expression
to be explored such as sculpture, dance, music, poetry, etc. The possibilities are
far-reaching and may one day perhaps exceed our imagination.

7 Conclusion

We have demonstrated that virtual organisms can be evolved to make aestheti-
cally pleasing paintings using selection pressures based on aesthetic properties of
the painting. The results from our experiments show notable behavioral differ-
ences between agents employed with wide-perspective and narrow-perspective vi-
sion. The wide-perspective population achieved the best results in terms of fitness
by evolving a circular movement strategy effective at maximizing fitness early
on, but later showing barely any signs of improvement. The narrow-perspective
population performed worse and did not evolve an exploitable strategy. Instead,
it brought about a diverse set of artifacts across all generations. From this we
conclude that the wide-perspective setup may be more suited for maximizing aes-
thetic fitness while the narrow-vision setup induces more behavioral complexity
and artifact diversity. Although, the scope of this research is limited, our results
provided some interesting insights and discussions which provide directions for
future applications of computational art systems employing virtual organisms.
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25. Krčah, P.: Evolution and Learning of Virtual Robots. Ph.D. thesis, Univerzita
Karlova (2016)

26. Langton, C.G.: Artificial life: An overview. Mit Press (1997)

BNAIC/BeneLearn 2020 86



Evolving Virtual Embodied Agents using External Artifact Evaluations 17

27. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary computation 19(2), 189–223 (2011)

28. Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., Beaulieu, J., Bentley,
P.J., Bernard, S., Beslon, G., Bryson, D.M., et al.: The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary computation and
artificial life research communities. Artificial Life 26(2), 274–306 (2020)

29. Machado, P., Cardoso, A.: All the truth about nevar. Applied Intelligence 16(2),
101–118 (2002)

30. Machado, P., Romero, J., Nadal, M., Santos, A., Correia, J., Carballal, A.: Com-
puterized measures of visual complexity. Acta psychologica 160, 43–57 (2015)

31. Matsuura, K.: A new pufferfish of the genus torquigener that builds “mystery
circles” on sandy bottoms in the ryukyu islands, japan (actinopterygii: Tetraodon-
tiformes: Tetraodontidae). Ichthyological research 62(2), 207–212 (2015)

32. McCormack, J.: Niche constructing drawing robots. In: EvoMUSART. pp. 201–216.
Springer (2017)

33. McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learn-
ing. In: EvoMUSART. pp. 118–133. Springer (2020)

34. Moura, L.: A new kind of art: The robotic action painter. X Generative Art Conf.,
Politecnico di Milano Univ. (2007)

35. Nake, F.: Information aesthetics: An heroic experiment. EvoMUSART 6(2-3), 65–
75 (2012)

36. Redies, C.: Combining universal beauty and cultural context in a unifying model
of visual aesthetic experience. Frontiers in human neuroscience 9, 218 (2015)

37. Scha, R., Bod, R.: Computationele esthetica. Informatie en Informatiebeleid 11(1),
54–63 (1993)

38. Schwefel, H.P.: Numerical optimization of computer models. John Wiley & Sons,
Inc (1981)

39. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-
Kovarik, J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evolutionary computation 19(3), 373–403 (2011)

40. Shimamura, A.P., Palmer, S.E.E.: Aesthetic science: Connecting minds, brains,
and experience. OUP USA (2012)

41. Sims, K.: Artificial evolution for computer graphics. In: PACMCGIT. vol. 18, pp.
319–328 (1991)

42. Sobel, I.: An isotropic 3× 3 image gradient operator, machine vision for three-
dimensional scenes (h. freeman editor) (1990)

43. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arxiv (2017), preprint

44. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of ec
optimization and human evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001)

45. Taylor, R.P., Micolich, A.P., Jonas, D.: Fractal analysis of pollock’s drip paintings.
Nature 399(6735), 422–422 (1999)

46. Todd, P.M., Werner, G.M.: Frankensteinian methods for evolutionary music. Mu-
sical networks: parallel distributed perception and performace pp. 313–340 (1999)

47. Todd, S., Latham, W.: Evolutionary art & computers. Academic Press, Inc. (1994)
48. Tresset, P., Deussen, O.: Artistically skilled embodied agents. In: AISB (2014)
49. Wilson, D.J.: An experimental investigation of birkhoff’s aesthetic measure. The

Journal of Abnormal and Social Psychology 34(3), 390 (1939)

BNAIC/BeneLearn 2020 87



Continuous surrogate-based optimization algorithms
are well-suited for expensive discrete problems

Rickard Karlsson, Laurens Bliek, Sicco Verwer, and Mathijs de Weerdt

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Abstract. One method to solve expensive black-box optimization problems is to
use a surrogate model that approximates the objective based on previous observed
evaluations. The surrogate, which is cheaper to evaluate, is optimized instead to
find an approximate solution to the original problem. In the case of discrete prob-
lems, recent research has revolved around surrogate models that are specifically
constructed to deal with with discrete structures. A main motivation is that litera-
ture considers continuous methods, such as Bayesian optimization with Gaussian
processes as the surrogate, to be sub-optimal (especially in higher dimensions)
because they ignore the discrete structure by e.g. rounding off real-valued so-
lutions to integers. However, we claim that this is not true. In fact, we present
empirical evidence showing that the use of continuous surrogate models displays
competitive performance on a set of high-dimensional discrete benchmark prob-
lems, including a real-life application, against state-of-the-art discrete surrogate-
based methods. Our experiments on different discrete structures and time con-
straints also give more insight into which algorithms work well on which type of
problem.

Introduction

A principal challenge in optimization is to deal with black-box objective functions.
The objective function is assumed to be unknown in this case, in contrast to traditional
optimization that often utilizes an explicit formulation to compute the gradient or lower
bounds. Instead, we assume to have an objective y = f(x) + ε with some unknown
function f(x) together with additive noise ε. Furthermore, f(x) can be expensive to
evaluate in terms of time or another resource which restricts the number of evaluations
allowed.

One type of method to solve these black-box optimization problems is the use of
surrogate models. Surrogate-based algorithms approximate the objective function in
search of the optimal solution, with the benefit that the surrogate model is cheaper to
evaluate. Bayesian optimization [22] is an example of such a surrogate-based algorithm.

An active field of research is how to deal with discrete black-box optimization
problems with an expensive objective function. There are many real-world examples
of this, such as deciding on the architecture of a deep neural network [7] or design-
ing molecules with desirable properties [15]. Furthermore, optimization over structured
domains was highlighted as an important problem to address from the NIPS 2017 work-
shop on Bayesian optimization [10].
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Discrete optimization problems can be solved with a continuous surrogate model,
e.g. Bayesian optimization with Gaussian processes [22], by ignoring the discrete struc-
ture and rounding off the real-valued input to discrete values. However, literature in
this field generally considers this to be a sub-optimal approach [1, 8]. Therefore, re-
search has revolved around inherently discrete models such as density estimators or
decision trees, e.g. HyperOpt [2] or SMAC [12]. Another approach is to use continuous
models that guarantee discrete optimal solutions, such as the piece-wise linear model
IDONE [4].

In contrast to common belief, we present an empirical study that displays that con-
tinuous surrogate models, in this case Gaussian processes and linear combinations of
rectified linear units, show competitive performance on expensive discrete optimization
benchmarks by outperforming discrete state-of-the-art algorithms. Firstly, we will in-
troduce the problem, the related work, and the considered benchmark problems. Then,
in the remainder of the paper we 1) perform a benchmark comparison between contin-
uous and discrete surrogate-based algorithms on optimization problems with different
discrete structures (including one real-life application), 2) investigate why continuous
surrogate models perform well by transforming the different discrete problem struc-
tures and visualizing the continuous surrogate models, and 3) perform a more realistic
analysis that takes the time budget and evaluation time into account when comparing
the algorithms. We conclude that continuous surrogates applied to discrete problems
should get more attention, and leave some questions for interesting directions of future
research in the domain of discrete expensive black-box optimization.

Problem Description

Consider the following class of d-dimensional discrete optimization problems:

minimize
x

f(x)

subject to x ∈ Zd

li ≤ xi ≤ ui, i = 1, . . . , d

(1)

where li and ui are the lower and upper bound for each integer-valued decision
variable xi. For black-box optimization problems, we assume to have no closed form
expression for f : Zd → R. The only information which can be gathered about f
comes from observing the output when evaluating f(x) given some input x. However,
in many real-world applications we will also have to deal with some noise ε ∈ R such
that we are given the output y = f(x) + ε. Obtaining an evaluation is also assumed to
be expensive: it could require large computational power, human interaction with the
system or time consuming simulations. Therefore it is of interest to obtain a solution
within a limited amount of evaluations B, also known as the budget.

One way of solving this class of problems is to make use of a so called surro-
gate model. A surrogate model is an auxiliary function M that approximates the ob-
jective function based on the points evaluated so far. This model is cheaper to evaluate
in comparison to the original black-box objective function. Given a number m of al-
ready evaluated points, the surrogate model is constructed using the evaluation history
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H = {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}. The surrogate can be utilized to
predict promising points to evaluate next on. The next feasible solution x(m+1) to eval-
uate on can be chosen based on this prediction. These steps, which are also described
in Algorithm 1, are repeated until the budget B is reached.

Typically, an acquisition functionA(M,x) is used to propose the next point x(m+1)

to evaluate with the objective function. It predicts how promising a new point x is,
based on a trade-off of exploitation (searching at or near already evaluated points that
had a low objective) and exploration (searching in regions where the surrogate has
high uncertainty). In general, the next point is chosen by finding the global optimum
x(m+1) = argmax

x
A(M,x).

Algorithm 1 Surrogate-based optimization
Require: budget B, surrogate model M , acquisition function A
1: Initialize x(1) randomly and an empty set H
2: for m = 1 : B do
3: y(m) ← f(x(m)) + ε
4: H ← H ∪ {(x(m), y(m)))}
5: M ← fit surrogate model using H
6: x(m+1) ← argmax

x
A(M,x)

7: end for
8: return optimal (x∗, y∗) ∈ H

Related Work

Although discrete problem structures are difficult to handle in black-box optimization,
multiple approaches have been proposed. A survey by M. Zaefferer [24] presents dif-
ferent strategies for dealing with discrete structures in surrogate-based algorithms. The
first strategy is the naive way by simply ignoring the discrete structure. Another strat-
egy is to use inherently discrete models such as tree-based models [2, 12]. These models
can however fail if the problem structure is too complex or if there are both discrete and
continuous variables involved [24]. Lastly, discrete structures can be dealt with by using
a certain mapping. Although this strategy does not apply directly to a surrogate model, a
suitable mapping can make the problem easier. For example, encoding integer solutions
with a binary representation can be easier for some regression models to handle.

There are also other strategies such as using problem-specific feature extraction or
customizing the model. However, these violate the black-box assumption which is why
we will not discuss them.

We now discuss several surrogate-based optimization algorithms that can solve the
expensive discrete optimization problem in eq. (1) and that also have their code avail-
able online.

Bayesian optimization has a long history of success in expensive optimization prob-
lems [13], and has been applied in many domains such as chemical design and hyper-
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parameter optimization for deep learning [9, 14]. It typically uses a Gaussian process
as a surrogate to approximate the expensive objective. Several acquisition functions ex-
ist to guide the search, such as Expected Improvement, Upper Confidence Bound, or
Thompson sampling [21], information-theoretic approaches such as Predictive Entropy
Search [11], or simply the surrogate itself [5, 18]. Though Gaussian processes are typ-
ically used on continuous problems, they can be adapted for problems with discrete
variables as well. The authors of [8] suggest three possible approaches, namely round-
ing to the nearest integer 1) when choosing where to evaluate the objective function, 2)
when evaluating the objective function, or 3) inside the covariance function of the Gaus-
sian process. The latter provides the best results but gives an acquisition function that
is hard to optimize. The first option leads to the algorithm getting stuck by repeatedly
evaluating the same points, although this can be circumvented by carefully balancing
exploration and exploitation [17]. In this work, we will consider only the simpler second
option, for which we do not need to modify any existing implementations.1

BOCS2 [1] transforms the combinatorial problem into one that can be solved with
semi-definite programming. It uses Thompson sampling as the acquisition function.
However, it suffers from a large time complexity, which was only recently overcome by
using a submodular relaxation called the PSR method3 [6].

COMBO4 [23] uses an efficient approximation of a Gaussian process with random
features, together with Thompson sampling as the acquisition function. Though this
gives increased efficiency, COMBO deals with discrete search spaces by iterating over
all possible candidate solutions, which is only possible for small-dimensional problems.

HyperOpt5 [2] makes use of a tree of Parzen estimators as the surrogate model. It
can naturally deal with categorical or integer variables, and even with conditional vari-
ables that only exist if other variables take on certain values. The algorithm is known
to perform especially well on hyperparameter tuning problems with hundreds of di-
mensions [3]. This is in sharp contrast with Bayesian optimization algorithms using
Gaussian processes, which are commonly used on problems with less than 10 dimen-
sions. A possible drawback for HyperOpt is that each dimension is modeled separately,
i.e., no interaction between different variables is modeled. HyperOpt uses the Expected
Improvement acquisition function.

SMAC6 [12] is another surrogate-based algorithm that can naturally deal with inte-
ger variables. The main reason for this is that the surrogate model used in this algorithm
is a random forest, which is an inherently discrete model. A point of critique for SMAC
is that the random forests have worse predictive capabilities than Gaussian processes.
Nevertheless, like HyperOpt, SMAC has been applied to problems with hundreds of
dimensions [16]. SMAC uses the Expected Improvement acquisition function.

1 We consider the implementation from https://github.com/fmfn/BayesianOptimization in this
work, which uses the Upper Confidence Bound acquisition function.

2 https://github.com/baptistar/BOCS
3 https://github.com/aryandeshwal/Submodular Relaxation BOCS
4 https://github.com/tsudalab/combo
5 https://github.com/hyperopt/hyperopt
6 https://github.com/automl/SMAC3
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IDONE7 [4] uses a linear combination of rectified linear units as its surrogate model.
This is a continuous function, yet it has the special property that any local minimum of
the model is located in a point where all variables take on integer values. This makes the
method suitable for expensive discrete optimization problems, with the advantage that
the acquisition function can be optimized efficiently with continuous solvers. IDONE
uses the surrogate model itself as the acquisition function, but adds small perturba-
tions to the optimum of the acquisition function to improve its exploration capabilities.
Though the method is not as mature as SMAC or HyperOpt, it also has been applied to
problems with more than 100 variables [4].

Benchmark problems

We present the four different benchmark problems that are used to compare the surrogate-
based algorithms. The purpose of the benchmarks is to compare the discrete surrogate-
based algorithms presented in the previous section and investigate which algorithms are
most suited for which type of problem.

The benchmarks have been selected to include binary, categorical and ordinal de-
cision variables but also different discrete structures such as sequential or graph-based
structures. Since we assume that the evaluation of the objective functions is expensive,
we perform the benchmark with a relatively strict budget of at most 500 evaluations. The
objective function is evaluated once per iteration in Algorithm 1. Furthermore, we are
testing on relatively large problem sizes, ranging from 44 up to 150 decision variables
with search spaces of around ∼ 1050 possibilities. This range is interesting considering
that Bayesian optimization using Gaussian processes is typically applied on problems
with less than 10 variables.

On top of that, it has been shown that a large dimensionality reduces the impor-
tance of choosing a complicated acquisition function [18], which helps us doing a fair
comparison between surrogates.

Moreover, we do an analysis of the performance of each algorithm where we limit
the allowed time budget instead of the number of evaluations and simulate different
evaluation times of the objective functions. The time budget includes both the total
time to evaluate the objective function and the computation time of the optimization
algorithm. Thus, it puts emphasis on the computation time of the algorithm in addition
to their respective sample efficiency.

We present the four benchmark problems in detail below. Note that we present these
problems in detail but that they are treated as black boxes by the optimization algo-
rithms.

The Discrete Rosenbrock problem is a d-dimensional, non-convex function, with
a curved valley that contains the global optimum defined by the following function:

f(x) =
d−1∑

i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2] (2)

7 https://bitbucket.org/lbliek2/idone
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where x ∈ Zd. In the Rosenbrock problem, finding the valley is simple, but finding
the global optimum [1, 1, . . . , 1] is not. As we are exploring discrete optimization prob-
lems, we consider a discrete variant of the problem such that only integer solutions
are considered. We have d = 49 decision variables and each decision variable xi is
bounded by the range [−5, 10]. Thus, the problem’s search space is in the order of 1059

candidate solutions. Lastly, the additive noise ε is normally distributed according to
N(µ = 0, σ = 10−6).

The Weighted Max-Cut problem is an NP-hard graph cutting problem, defined as
follows: For an undirected weighted graph G = (V,E), a cut in G creates the subset
S ⊆ V and its complement S = V \S. Then E(S, S), is defined as the set of edges that
have one vertex in S and the other in S. The Max-Cut problem is to find the cut that
maximizes the weight of the edges in E(S, S). The problem is encoded with a binary
string x ∈ {0, 1}d where either xi = 0 or xi = 1 indicates if node i lies in S or S
respectively.

For the following experiments, the MaxCut problem instances are randomly gen-
erated as weighted graphs, with d nodes, edge probability p = 0.5 and a uniformly
distributed edge weight in the range [0, 10]. The graph generator is initialized with the
same random seed for every run, ensuring that all experiments of a given problem size
are performed on the same graph. On top of that, the additive noise ε added to each
evaluation is following a standard normal distribution N(µ = 0, σ = 1). Lastly, we are
using a graph with d = 150 nodes which means that the size of the problem’s search
space is 2150 ≈ 1057.

The Perturbed Traveling Salesman is a variant of the well-known sequential
graph problem where, given a number of cities and the distances between these cities,
a shortest path needs to be found that visits all cities and returns to the starting city.
We consider the asymmetric case with k cities where the distance between cities is not
the same in both directions. Moreover, noise ε ∼ U(0, 1) is added to each distance
during evaluation. While the perturbation can cause issues for problem-specific solvers,
it creates a good benchmark for black-box optimization algorithms. To ensure a robust
solution, each proposed route is also evaluated 100 times and the worst-case objec-
tive value is returned. Furthermore, we will consider problem instance ftv44. This is
an instance with 44 cities taken from TSPLIB [20], a library of problem instances for
the traveling salesman problem. An instance with 44 cities is chosen to closely match
the number of decision variables in the ESP problem which has a fixed number of 49
decision variables.

The problem is encoded as in [4]: after choosing a fixed origin city, there are d =
k − 2 ordered decision variables xi for i = 1, . . . , d such that x1 ∈ {1, 2, . . . , k − 1}
where each integer represents a city other than the origin city. Then, the next decision
variable x2 ∈ {1, ..., k − 2} selects between the cities that were not yet visited. This is
repeated until all cities have been chosen in some order. Since the last decision variable
xd ∈ {1, 2} selects between the two remaining cities, we can deduce afterward the
two remaining edges which closes the route since there is one last city to visit before
returning to the origin city. Thus, the total number of possible sequences is given by
(d− 1)! ≈ 6 · 1052 for this instance.
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The Electrostatic Precipitator problem is a real-world industrial optimization
problem first published by Rehbach et al. [19]. The Electrostatic Precipitator (ESP)
is a crucial component for gas cleaning systems. It is a large device that is used when
solid particles need to be filtered from exhaust gases, such as reducing pollution in fos-
sil fueled power plants. Before gas enters the ESP, it passes through a gas distribution
system that controls the gas flow into the ESP. The gas flow is guided by configurable
metal plates which blocks the airflow to a varying degree. The configuration of these
plates inside the gas distribution system is vital for the efficiency of the ESP. However,
it is non-trivial to configure this system optimally.

The objective function is computed with a computationally intensive fluid dynamics
simulation, taking about half a minute of computation time every time a configuration
is tested. There are 49 slots where different types of plates can be placed or be left
empty. In total, there are 8 different options available per slot. This is formalized such
that each integer-valued solution x is subject to the inequality constraint 0 ≤ xi ≤ 7
for i = 1, . . . , 49. This gives a large solution space in the order of 1044 possibilities.

Lastly, the problem has some ordinal structure where the decision variables decides
between sizes of holes which are covering the plates. However, as an indication of the
complex problem structure we have noted that changing any single variable does not
affect the objective function.

Experiments

The goal of this section is to show a benchmark comparison between discrete and
continuous surrogate-based algorithms on the discrete optimization problems of the
previous section. The compared algorithms are HyperOpt and SMAC as two popular
surrogate-based algorithms that make use of a discrete surrogate model if the search
space is discrete, and Bayesian optimization as a popular surrogate-based algorithm for
continuous problems. Though there exist several other algorithms that can deal with the
discrete setting, these three are often used in practice because they are well established,
can be used for a wide variety of problems, and have code available online. We also in-
clude IDONE in the comparisons as a surrogate-based algorithm that uses a continuous
surrogate model but is designed for discrete problems, and random search is included
as a baseline.

All experiments were run on the same Unix-based laptop with a Dual-Core Intel
Core i5 2.7 GHz CPU and 8 GB RAM. Each algorithm attempted to solve the bench-
marks 5 times. The allowed evaluation budget was 500 evaluations for all problems
except the ESP problem where 100 evaluations were allowed instead due to it being
more computationally expensive.

We are using the default hyperparameters for all algorithms, which are decided by
their respective code libraries, with two exceptions. We change the SMAC algorithm to
deterministic mode, since it otherwise evaluates the same point several times, which de-
teriorates its performance significantly. Besides that, the first five iterations of IDONE
are random evaluations, which is similar to what happens in the other algorithms. The
other algorithms start with their default number of random evaluations (which is 5 for
Bayesian optimization and 3 for SMAC and HyperOpt), however for a fair comparison
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we make sure that all of these initial random evaluations come from a uniform distribu-
tion over the search space. Unfortunately, more extensive hyperparameter tuning than
stated above is too time-consuming for expensive optimization problems such as ESP.

In the following section we present the results from the benchmark comparison of
the four surrogate-based optimization algorithms. The benchmark consists of the four
problems which have varying discrete structures.

Results

In this section we describe the main results from comparing the algorithms on the dis-
crete Rosenbrock, weighted Max-Cut, the travelling salesman and the ESP problems.
Figure 2 shows the best average objective value found until a given iteration on each
problem as well as their respective computation time. The computation time is the cu-
mulative time up until iteration i which is required to perform the steps on line 5 and
6 in Algorithm 1. Furthermore, we also investigate how the algorithms perform if we
introduce a time budget during optimization instead of constraining the number of eval-
uations.

Ordinal structures We start by comparing the results from the 49-dimensional discrete
Rosenbrock problem. In Figure 2a, we see that Bayesian optimization (BO) is the only
algorithm that comes close to the optimal objective value of zero. The other algorithms
are not performing as well, where HyperOpt (HO) gets the closest to BO. Given that the
problem is in fact a discrete version of an inherently continuous problem with ordinal
variables, this can be considered to be well suited for continuous model regression. On
the other hand, IDONE also uses a continuous surrogate, but it does not perform as well
as BO. A possible explanation is that IDONE is less flexible since it is a piece-wise
linear model.

To investigate the quality of the surrogates from both BO and IDONE, we visualize
their surfaces in Figure 1 for the 2-dimensional case of Rosenbrock. The Gaussian pro-
cess from BO (which uses a Matérn 5/2 kernel in this case) predicts a smoother surface
than IDONE which appears more rugged and uneven. Overall, BO looks more similar
to the objective ground truth. We can argue that this is why BO performs well while
IDONE does not. BO is likely suitable for the discrete Rosenbrock problem since the
problem has an underlying continuous structure with ordinal variables. Meanwhile, this
structure could be too complex for the piece-wise linear surrogate in IDONE.

However, we are interested in investigating problems which do not necessarily have
a clear continuous structure. Thus, we look at the ESP problem which also happens to
have some ordinal structure. The results from this problem are found in Figure 2c. It
shows a more even performance among the algorithms compared to the Rosenbrock
problem, although BO still returns the best objective on average. This is closely fol-
lowed by both SMAC and HO, while IDONE is doing worse than random search.

Based on the results from these two problems, it appears that BO works well on
ordinal structures. However, this does not seem to hold true for all continuous surrogates
considering the performance of IDONE. Still, the naive approach with BO outperforms
the other state-of-the-art discrete algorithms on the problems that we have discussed so
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Fig. 1: Visualization of continuous surrogates that approximate the two-dimensional
Rosenbrock, namely the linear combination of ReLUs from IDONE and Gaussian pro-
cesses from BO. These models were picked based on the best performance from 15
different runs with 50 evaluations each. HyperOpt and SMAC are not visualized since
this is not supported by their respective code libraries.

far. This is actually in line with experimental results from [8] on small problems (up
to 6 dimensions) with both discrete and continuous parameters, though it was not the
main conclusion of the authors. The difference with our work is that we consider purely
discrete problems of higher dimensions, from a real-life application, and we include
IDONE in the comparison.

Binary structures We will now consider a graph problem, that is the weighted Max-
Cut problem. From the results in Figure 2e, we notice that BO clearly outperforms all
other algorithms. Meanwhile, IDONE is the second best, followed by SMAC and then
HO which performs worse than random search. Compared to the other problems that
we have seen so far, a major difference is the binary decision variables in the Max-Cut
problem. We use this to frame our hypothesis, namely that the good performance of BO
on the Max-Cut problem is due to the binary structure of the problem.

To investigate this hypothesis, we perform an additional experiment by encoding the
49-dimensional, discrete Rosenbrock with binary variables and compare this with the
previous results from Figure 2a. The ordinary problem has 49 integer decision variables
which lie in the range [−5, 10], this is converted into a total of 196 binary decision vari-
ables for the binary-encoded version. Table 1 shows the performance of the algorithms
on the binary-encoded, discrete Rosenbrock. Although BO is performing worse on the
binarized Rosenbrock, it is still performing the best compared to the other algorithms,
even though both SMAC and IDONE perform better on the binarized problem. Thus,
we could argue that the binary representation of the Max-Cut problem can not explain
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(a) Best average objective value versus iteration
on the 49-dimensional discrete Rosenbrock.

(b) Average computation time versus iteration
on the 49-dimensional discrete Rosenbrock.

(c) Best average objective value versus iteration
on the ESP problem.

(d) Average computation time versus iteration
on the ESP problem.

(e) Best average objective value versus iteration
on the 150-dimensional weighted Max-Cut.

(f) Average computation time versus iteration
on the 150-dimensional weighted Max-Cut.

(g) Best average objective value versus iteration
on the TSP with 44 cities.

(h) Average computation time versus iteration
on the TSP with 44 cities.

Fig. 2: Comparison of objective value and computation time of Bayesian optimiza-
tion (BO), SMAC, IDONE, HyperOpt (HO) and random search (RS) on four different
benchmark problem. An average is computed from 5 runs and the standard deviation is
plotted as the error. The objective value has been negated for Max-Cut since the maxi-
mization problem has been turned into a minimization problem. The evaluation budget
was 500 evaluations for all problems except the ESP problem which was limited to 100
evaluations due to it being more computationally expensive.
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why BO performs well on this problem. There is a possible argument that the binary
variables might cause less rounding-off errors since the range of values is simply zero
to one with a threshold in the middle. However, a counter-argument is that such a large
number of decision variables is typically not well-suited for Gaussian processes regres-
sion. This is also indicated by the large computation time of BO on the Max-Cut, see
Figure 2f, compared to the other problems as well.

Sequential structures Even though TSP is a graph problem like the Max-Cut problem,
there is an important difference. TSP has a sequential structure since the decision vari-
ables select an ordering that directly affects the objective value. Moreover, the encoding
of the problem, as described in the “Benchmarks problems” section, causes strong in-
teractions between adjacent decision variables.

We continue by looking at the results from TSP in Figure 2g. BO is now outper-
formed by IDONE even though it still performs better than SMAC and HO on aver-
age, although BO has a large variance on this problem. We suspect that the sequential
structure is well-suited for IDONE, as it explicitly fits some of its basis functions with
adjacent variables in the input vector (x1, x2, . . . , xd) [4].

To investigate whether this is the case, we test what happens when the order of
the decision variables are re-shuffled in TSP such that the sequential structure is re-
moved. This is done by adding to the objective function a mapping that changes the
order of the variables in the input vector (x1, x2, . . . , xd) to a fixed arbitrarily chosen
order. From Table 2 we see that IDONE performs worse without the original sequential
structure. At the same time, the other algorithms show no large significant difference.
However, IDONE returns the best objective on average both with and without shuffling
the order of variables. The large variance on BO makes it more difficult to draw any
strong conclusions, but since IDONE also uses a continuous surrogate model, we can
still conclude that continuous surrogates perform better than the discrete counterparts
on this problem.

Algorithm Non-binary Binary
BO 0.067 (0.021) 0.37 (0.038)

SMAC 1.61 (0.18) 1.28 (0.29)
HyperOpt 0.91 (0.13) 0.94 (0.14)
IDONE 1.13 (0.20) 0.61 (0.038)

Table 1: Comparison of results on the
49-dimensional discrete Rosenbrock with
and without binary encoding of the deci-
sion variables. The final average objective
value from 5 runs is presented after 500
evaluations with the standard deviation in
parenthesis. The lowest objective value is
marked as bold in each column.

Algorithm Non-shuffled Shuffled
BO 4713.2 (789.2) 4898.0 (292.4)

SMAC 4841.8 (184.7) 4784.9 (302.7)
HyperOpt 4971.9 (256.5) 4871.8 (221.9)
IDONE 4122.8 (279.8) 4556.4 (175.7)

Table 2: Comparison of TSP with 44 cities
when the input has a sequential struc-
ture versus that decision variables’ posi-
tion have been shuffled. The final average
objective value from 5 runs is presented
after 500 evaluations with the standard de-
viation in parenthesis. The lowest objec-
tive value is marked as bold in each col-
umn.
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Taking computation time into consideration Although BO performs well on the
benchmark comparisons, we are noticing that it is more expensive with respect to com-
pute time compared to the other surrogate-based methods. Figures 2b, 2d, 2f and 2h
show the cumulative time on the problems.

In general, BO requires a vast amount of time compared to the other algorithms, es-
pecially on Max-Cut where the computations took one to two minutes per iteration. This
is not surprising considering that regression with Gaussian processes is computationally
intensive: its complexity grows as O(n3) where n are the number of observations [21].
This can be a big drawback if the evaluation time of the objective function is relatively
small.

Fig. 3: The best algorithm on average when given a time budget and a fixed evaluation
time of the objective function. The results are simulated by adding an artificial evalu-
ation time after running the experiments. For the ESP problem, the actual evaluation
time was about 3 · 101 seconds for each function evaluation. The time budget includes
both the evaluation time and the compute time of the algorithms.

Meanwhile, the other algorithms share similar computation times which are often
less than one second. The only exception is for IDONE which requires more computa-
tion time on TSP, see Figure 2h.

So far, we have only considered experiments that restrict the number of evaluations.
But in real-life applications, the computation time of an algorithm can be important to
take into consideration when limited with some given time budget as well. In particular,
the large computation time of BO motivates the question whether it would still perform
well under a constrained time budget instead. By keeping track of both the evaluation
times of the objective functions, as well as the computation time spent by the algorithms
at every iteration, we can investigate the performance of the algorithms in different
situations. We artificially adjust the evaluation time in the experiments from Figure 2
to simulate the cost of the objective function. The evaluation time ranges from 101 to
1.5 · 103 seconds. Similarly, the time budget varies between 102 and 104 seconds.
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Figure 3 displays which algorithm performs best on average for each problem, de-
pending on the evaluation time and time budget. Notice that the lower triangular shape
is caused by the fact that the time budget must be larger than the evaluation time. To
ensure a fair comparison, we only present the algorithm with the best final average
objective value if the maximum number of evaluations from the previous benchmark
experiments was not exceeded within the allocated time budget for all algorithms.

For the ESP problem, the results are mixed. It seems like the best algorithm varies
between BO, HO, SMAC and even random search, depending mostly on the ratio be-
tween the time budget and the evaluation time. For example, random search performs
best when the evaluation time is around the order of 101 smaller than the time bud-
get which gives relatively few evaluations. Meanwhile, BO performs best with a much
larger ratio. On the discrete Rosenbrock benchmark, BO is clearly the best in almost all
cases. The only exception is when the ratio between evaluation time and time budget is
very small, in which case IDONE performs better. For the weighted Max-Cut, on the
other hand, we notice the opposite of what we see with the Rosenbrock benchmark.
Thus, it seems like the growth in compute time of BO, see Figure 2f, sometimes out-
weighs its good performance which we noted earlier when only taking an evaluation
budget into consideration. Lastly, we see that IDONE and HyperOpt outperform other
algorithms on TSP when constrained by a time budget.

This experiment gives a better picture of the performance of each algorithm, espe-
cially if we may consider it to be more realistic by taking time constraints into consid-
eration. Thus, the experiment from Figure 3 is a good complement to our benchmark
comparison. In the following and last section, we summarize the conclusions that can
be drawn from all of the above experiments.

Conclusion and Future Work

Based on the results from the benchmark comparison, we can show that the use of con-
tinuous surrogate models is a valid approach for expensive, discrete black-box optimiza-
tion. Moreover, we give insight into what discrete problem structures are well-suited for
the different methods.

We have shown that Bayesian optimization (BO) performs better than discrete state-
of-the-art algorithms on the four tested, high-dimensional benchmarks problem with
either ordinal, sequential or binary structures. IDONE, another continuous surrogate-
based algorithm designed for discrete problems, outperforms BO on the benchmark
with a sequential structure, but not on the three other benchmarks.

In addition, we have investigated how the different algorithms deal with the different
problem structures. Firstly, ordinal structures appear suitable for BO, especially if the
objective function has an underlying continuous structure such as the discrete Rosen-
brock benchmark. For binary structures, we noticed that BO is negatively affected by
binary variables, while IDONE and SMAC benefited from this transformation. How-
ever, BO still returned the best solution on the binary Max-Cut problem, even though
a big drawback was its computation time. Lastly, we have seen that IDONE outper-
forms the other algorithms on a problem with sequential decision variables, even after
negatively affecting it by changing the ordering.
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We also investigated the different algorithms under different time constraints by
artificially changing the function evaluation times of the different benchmark problems.
For lower time budgets, BO is held back by its large compute time in some cases. Even
though BO is a time-intensive method, it mostly showed competitive performance when
the evaluation time was relatively low and the time budget high, except for the binary
Max-Cut problem. IDONE, HyperOpt, SMAC, and even random search all had specific
problems and time budgets where they outperformed other algorithms. Lastly, based on
our results, discrete surrogate-based methods could be more relevant in the setting with
a limited time budget, in contrast to only limiting the number of evaluations.

Finally, we state some open questions which remain to be answered about continu-
ous surrogates in the topic of expensive, discrete black-box optimization. Considering
that we looked at a naive approach of BO, it is still an open question how the more
advanced discrete BO variations would fare in the framework where time budgets and
function evaluations times are taken into account like in this paper. This same frame-
work would also lead to interesting comparisons between surrogate-based algorithms
and other black-box algorithms such as local search or evolutionary algorithms, which
are better suited for cheap function evaluations. It also remains unclear why BO per-
forms best on the binary Max-Cut benchmark even though it is negatively affected by
binary structures on the Rosenbrock function. Finally, it would be of great practical
value if one could decide on the best surrogate-based algorithm in advance, given the
time budget and evaluation time of a real-life optimization problem. This research is a
first step in that direction.

Acknowledgments

This work is part of the research programme Real-time data-driven maintenance logis-
tics with project number 628.009.012, which is financed by the Dutch Research Council
(NWO). The authors would also like to thank Arthur Guijt for helping with the python
code.

References

1. Baptista, R., Poloczek, M.: Bayesian optimization of combinatorial structures. In: Interna-
tional Conference on Machine Learning. pp. 471–480 (2018)

2. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: A Python library for optimizing the hyper-
parameters of machine learning algorithms. In: Proceedings of the 12th Python in science
conference. pp. 13–20 (2013)

3. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th
International Conference on Machine Learning. Jmlr (2013)

4. Bliek, L., Verwer, S., de Weerdt, M.: Black-box combinatorial optimization using models
with integer-valued minima. arXiv preprint arXiv:1911.08817 (2019)

5. De Ath, G., Everson, R.M., Rahat, A.A., Fieldsend, J.E.: Greed is good: Exploration and
exploitation trade-offs in Bayesian optimisation. arXiv preprint arXiv:1911.12809 (2019)

6. Deshwal, A., Belakaria, S., Doppa, J.R.: Scalable combinatorial Bayesian optimization with
tractable statistical models. arXiv preprint arXiv:2008.08177 (2020)

BNAIC/BeneLearn 2020 101



Title Suppressed Due to Excessive Length 15

7. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377 (2018)

8. Garrido-Merchán, E.C., Hernández-Lobato, D.: Dealing with categorical and integer-valued
variables in Bayesian optimization with Gaussian processes. Neurocomputing 380, 20–35
(2020)

9. Griffiths, R.R., Hernández-Lobato, J.M.: Constrained Bayesian optimization for automatic
chemical design. arXiv preprint arXiv:1709.05501 (2017)

10. Hernández-Lobato, J.M., Gonzalez, J., Martinez-Cantin, R.: NIPS workshop on Bayesian
optimization. https://bayesopt.github.io/, accessed 22-08-2020

11. Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for
efficient global optimization of black-box functions. In: Advances in neural information pro-
cessing systems. pp. 918–926 (2014)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: International conference on learning and intelligent optimiza-
tion. pp. 507–523. Springer (2011)

13. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box
functions. Journal of Global optimization 13(4), 455–492 (1998)

14. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian optimization of ma-
chine learning hyperparameters on large datasets. In: Artificial Intelligence and Statistics.
pp. 528–536 (2017)

15. Korovina, K., Xu, S., Kandasamy, K., Neiswanger, W., Poczos, B., Schneider, J., Xing, E.:
Chembo: Bayesian optimization of small organic molecules with synthesizable recommen-
dations. In: International Conference on Artificial Intelligence and Statistics. pp. 3393–3403.
PMLR (2020)

16. Lindauer, M., Hutter, F.: Warmstarting of model-based algorithm configuration. arXiv
preprint arXiv:1709.04636 (2017)

17. Luong, P., Gupta, S., Nguyen, D., Rana, S., Venkatesh, S.: Bayesian optimization with dis-
crete variables. In: Australasian Joint Conference on Artificial Intelligence. pp. 473–484.
Springer (2019)

18. Rehbach, F., Zaefferer, M., Naujoks, B., Bartz-Beielstein, T.: Expected improvement versus
predicted value in surrogate-based optimization. arXiv preprint arXiv:2001.02957 (2020)

19. Rehbach, F., Zaefferer, M., Stork, J., Bartz-Beielstein, T.: Comparison of parallel surrogate-
assisted optimization approaches. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference. p. 1348–1355. GECCO ’18, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3205455.3205587

20. Reinelt, G.: TSPlib. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html, accessed 31-07-
2020

21. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out
of the loop: A review of Bayesian optimization. Proceedings of the IEEE 104(1), 148–175
(2016)

22. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems. pp. 2951–2959 (2012)

23. Ueno, T., Rhone, T.D., Hou, Z., Mizoguchi, T., Tsuda, K.: Combo: An efficient Bayesian
optimization library for materials science. Materials discovery 4, 18–21 (2016)

24. Zaefferer, M.: Surrogate Models For Discrete Optimization Problems. Ph.D. thesis, Technis-
chen Universität Dortmund (2018)

BNAIC/BeneLearn 2020 102



Comparing Correction Methods to Reduce
Misclassification Bias

Kevin Kloos1,5[0000−0001−6980−4259], Quinten Meertens3,4,5[0000−0002−3485−8895],
Sander Scholtus5[0000−0002−8316−8938], and Julian Karch2[0000−0002−1625−2822]

1 Mathematical Institute, Leiden University, the Netherlands
2 Institute of Psychology, Leiden University, the Netherlands

3 Leiden Centre of Data Science, Leiden University, the Netherlands
4 Center for Nonlinear Dynamics in Economics and Finance, University of

Amsterdam, the Netherlands
5 Statistics Netherlands, The Hague, the Netherlands †

Abstract. When applying supervised machine learning algorithms to
classification, the classical goal is to reconstruct the true labels as accu-
rately as possible. However, if the predictions of an accurate algorithm
are aggregated, for example by counting the predictions of a single class
label, the result is often still statistically biased. Implementing machine
learning algorithms in the context of official statistics is therefore im-
peded. The statistical bias that occurs when aggregating the predictions
of a machine learning algorithm is referred to as misclassification bias. In
this paper, we focus on reducing the misclassification bias of binary clas-
sification algorithms by employing five existing estimation techniques,
or estimators. As reducing bias might increase variance, the estimators
are evaluated by their mean squared error (MSE). For three of the es-
timators, we are the first to derive an expression for the MSE in finite
samples, complementing the existing asymptotic results in the literature.
The expressions are then used to compute decision boundaries numeri-
cally, indicating under which conditions each of the estimators is optimal,
i.e., has the lowest MSE. Our main conclusion is that the calibration es-
timator performs best in most applications. Moreover, the calibration
estimator is unbiased and it significantly reduces the MSE compared to
that of the uncorrected aggregated predictions, supporting the use of
machine learning in the context of official statistics.‡
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1 Introduction

Currently, many researchers in the field of official statistics are examining the
potential of machine learning algorithms. A typical example is estimating the
proportion of houses in the Netherlands having solar panels, by employing a
machine learning algorithm trained to classify satellite images [3]. However, as
long as the algorithm’s predictions are not error-free, the estimate of the relative
occurrence of a class, also known as the base rate, can be biased [17,18]. This
fact is also intuitively clear: if the number of false positives does not equal the
number of false negatives, then the estimate of the base rate is biased, even if
the false positive rate and false negative rate are both small. The statistical bias
that occurs when aggregating the predictions of a machine learning algorithm is
referred to as misclassification bias [5].

Misclassification bias occurs in a broad range of applications, including official
statistics [13], land cover mapping [12], political science [9,21], and epidemiology
[8]. The objective in each of these applications is to minimize a loss function at
the level of aggregated predictions, in contrast to minimizing a loss function at
the level of individual predictions. Within the field of machine learning, learning
with that objective is referred to as quantification learning; see [6] for a recent
overview. In quantification learning, the idea is not to train a classifier at all,
but to directly estimate the base rate from the feature distribution. A drawback
of that approach is that relatively large training and test datasets are needed to
optimize hyperparameters and to obtain accurate estimates of the accuracy of
the prediction, respectively. In the applications referred to before, labelled data
are often expensive to obtain and therefore scarce. Hence, in this paper, we focus
on what is referred to as quantifiers based on corrected classifiers [6]. In short, it
entails that we first aggregate predictions of classification algorithms and then
correct the aggregates in order to reduce misclassification bias.

In the literature on measurement error, several methods have been proposed
to reduce misclassification bias when aggregating categorical data that is prone
to measurement error; see [11] for a technical discussion and [1] for a more
recent overview. Based on that literature, we propose a total of five estimators
for the base rate that can be derived from the confusion matrix of a classification
algorithm. As reducing bias might increase variance, the estimators are evaluated
by their mean squared error (MSE). To the best of our knowledge, for three of
the five estimators, only asymptotic expressions for the MSE are ever presented
in the literature. In this paper, we derive the expressions for the MSE for finite
datasets. As a first step, we restrict ourselves to binary classification problems.
Nonetheless, we believe that the same proof strategies may be used for multi-
class classification problems. The expressions for the MSE enable a theoretical
comparison of the five estimators for finite datasets. It allows us, for the first
time, to make solid recommendations on how to employ classification algorithms
in official statistics and other disciplines interested in aggregate statistics.

The remainder of the paper is organized as follows. First, in Section 2, the
five estimators are formally introduced and the mathematical expressions for
their MSEs are presented. The derivations are included in the appendix. Then, in
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Section 3, the decision boundaries are numerically derived. We can indicate under
which condition, like the sensitivity and specificity of the learning algorithm and
the size of the test set, each of the estimators has the lowest MSE. Finally, in
Section 4, we draw our main conclusion and discuss directions for future research.

2 Methods

Consider a target population of N objects and assume that the objects can be
separated into two classes. One of the two classes is the class of interest. We
refer to the relative occurrence of the class of interest in the target population
as the base rate and we denote that parameter by α. In the example mentioned
in Section 1, the objects are houses in the Netherlands and the two classes are
whether or not the house has solar panels on the roof [3]. The class of interest
is having solar panels and hence α indicates the relative frequency of houses in
the country having solar panels.

We assume that the true classifications are only known for objects in a small
simple random sample of the target population. In the applications that we
consider, these classifications are obtained by manual inspection of the objects
in that sample. Objects that belong to the class of interest receive class label 1,
the other objects receive class label 0. Then, the sample is split randomly into a
training set and a test set. As usual, the training set is used for model selection
through cross-validation and is then used to train the selected model. We will
consider the result of that part of the process as given. The test set is used to
estimate the classification performance of the trained algorithm, which we will
discuss in more detail below. Finally, the classification algorithm is applied on
the entire target population (minus the small random sample, but we will neglect
that small difference) resulting in a predicted label for each object.

As we will encounter in Subsection 2.2, simply computing the relative occur-
rence of objects predicted to belong to the class of interest will result in a biased
estimate of α. That bias is referred to as misclassification bias [4]. In this section,
five estimators for the base rate parameter α are formally introduced, many of
which have been proposed decades ago; see [11] for an extensive discussion. We
summarize the formulas for bias and variance that can be found in the literature
and complement them with our own derivations.

In order to correct for misclassification bias, we need estimates of the al-
gorithm’s (mis)classification probabilities. Following [20], we assume that mis-
classifications are independent across objects and that the (mis)classification
probabilities are the same for each object, conditional on their true class label.
With this classification-error model in mind, we denote the probability that the
algorithm predicts an object of class 0 correctly by p00 and we define p11 anal-
ogously. Observe that p11 and p00 correspond to the algorithm’s sensitivity and
specificity, respectively. The confusion matrix P is then defined as follows:

P =

(
p00 1− p00

1− p11 p11

)
. (1)
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Table 1: Contingency tables for test set (left) and target population (right)
(a)

Estimated class
0 1 Tot

True class
0 n00 n01 n0+

1 n10 n11 n1+

Tot n+0 n+1 n

(b)

Estimated class
0 1 Tot

True class
0 N00 N01 N0+

1 N10 N11 N1+

Tot N+0 N+1 N

The classification probabilities p00 and p11 are not known, but will be esti-
mated using the test set. We write n for the size of the test set and introduce
the notation nij and Nij as depicted in Table 1. The classification probabilities
are then estimated without bias by p̂00 = n00/n0+ and p̂11 = n11/n1+. (Here,
the assumption is needed that the test set is a simple random sample from the
target population.) Furthermore, the base rate α for the target population is
defined formally as α = N1+/N .

Finally, we make the following technical assumptions. We assume that the
algorithm is not perfect in predicting either of the classes, but that it is bet-
ter than guessing for both of the classes, i.e., we assume that 0.5 < pii < 1.
Because the test set is a small (i.e., n � N) simple random sample from the
population, n0+ may be assumed to follow a Bin(n, α)-distribution, since α is
considered fixed. Moreover, the classification-error model that we assume implies
that the elements in the rows in Table 1, conditional on the corresponding row
total, follow a binomial distribution as well, with the corresponding classification
probability as success probability. For example, to name just two out of the eight
entries, n00 | n0+ ∼ Bin(n0+, p00) and N10 | N1+ ∼ Bin(N1+, 1−p11). Last, the
assumption n� N justifies our ultimate technical assumption, which is that the
estimators for the entries in P based on the test set on the one hand and esti-
mators for α based only on the predicted class labels for the target population
on the other hand, are independent random variables.

2.1 Baseline estimator - random sample

The baseline estimator for α is the proportion of data points in the test dataset
for which the observed class label is equal to 1. The baseline estimator will be
denoted by α̂a. Under the assumptions discussed above, it is immediate that α̂a
is an unbiased estimator for α, i.e.:

B [α̂a] = 0. (2)

Since we have assumed that the size n of the test dataset is much smaller than
the size N of the population data, we may approximate the distribution of nα̂a
by a binomial distribution with success probability α. The variance, and hence
the MSE, of α̂a is then given by

MSE [α̂a] = V [α̂a] =
α(1− α)

n
. (3)
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This MSE will serve as the baseline value for the other estimators we discuss.

2.2 Classify and count

When applying a trained machine learning algorithm on new data, we may
simply count the number of data points for which the predicted class equals
1. The resulting estimator for α, which we will denote by α̂∗, is referred to
as the ‘classify-and-count’ estimator, see [6]. In general, the classify-and-count
estimator is (strongly) biased, and has almost zero variance. More specifically,

E [α̂∗] = αp11 + (1− α)(1− p00), (4)

and hence
B [α̂∗] = α(p11 − 1) + (1− α)(1− p00), (5)

which is zero only if the point (p00, p11) lies on the line through (1 − α, α) and
(1, 1) in R2, as shown in [17]. The variance of the classify-and-count estimator
is derived in [2] and equals

V [α̂∗] =
αp11(1− p11) + (1− α)p00(1− p00)

N
. (6)

If the population size N is large, the variance of α̂∗ is low. In some literature,
this low variance is misinterpreted as high accuracy, by claiming intuitively that
the large size of the dataset implies that the noise cancels out (cf. [16]). However,
the nonzero bias is neglected in such arguments. Therefore, we are interested in
the MSE because it considers both bias and variance. It equals

MSE [α̂∗] =
[
α(p11 − 1) + (1− α)(1− p00)

]2
+O

(
1

N

)
. (7)

Here and below, the notation O(1/x) indicates a remainder term that, for suffi-
ciently large values of x > 0, is always contained inside an interval (−C/x,C/x)
for some constant C > 0; see, e.g., [19, p. 147]. Observe how, in general, the
MSE does not converge to 0 as N tends to ∞.

2.3 Subtracting estimated bias

Knowing that the classify-and-count estimator α̂∗ is biased (see (5)), we may
attempt to estimate that bias and subtract it from α̂∗. As briefly mentioned in
[17], we may estimate that bias by the plug-in estimator, that is, we substitute
the unknown quantities in Equation (5) by their estimates. More precisely, the
bias is estimated as

B̂ [α̂∗] = α̂∗(p̂00 + p̂11 − 2) + (1− p̂00), (8)

in which the estimators p̂00 and p̂11 are based on the test dataset. The resulting
estimator α̂b for α equals

α̂b = α̂∗ − B̂ [α̂∗] = α̂∗(3− p̂00 − p̂11)− (1− p̂00). (9)
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To the best of our knowledge, the bias and variance of the estimator α̂b have
not been published in the scientific literature. Therefore, we have derived both,
up to terms of order 1/n2, yielding the following result.

Theorem 1. The bias of α̂b as estimator for α is given by

B [α̂b] = (1− p00)(2− p00 − p11)− α(p00 + p11 − 2)2. (10)

The variance of α̂b equals

V [α̂b] =
[α(p00 + p11 − 1)− p00]

2
p00(1− p00)

n(1− α)

(
1 +

α

n(1− α)

)

+
[α(p00 + p11 − 1) + (1− p00)]

2
p11(1− p11)

nα

(
1 +

1− α
nα

)

+O

(
max

[
1

n3
,

1

N

])
. (11)

Proof. See the Appendix.

In particular, Theorem 1 implies that B [α̂b] = (2 − p00 − p11)B [α̂∗], compare
Equations (10) and (5). Hence, |B [α̂b] | ≤ |B [α̂∗] |, because 1 < p00 + p11 < 2.

2.4 Misclassification probabilities

Let P be the row-normalized confusion matrix of the machine learning algorithm
that we have trained, as defined in (1). That is, entry pij is the probability that
the algorithm predicts class j for a data point that belongs to class i. The
probabilities pij are referred to as misclassification probabilities. In the binary
setting, we write α for the column vector (1− α, α)T (similarly for α̂∗). Under
the assumption that the probabilities pij are identical for each data point, we

obtain the expression E[α̂∗] = PTα. If the true values of all entries pij of P

were known and if p00 + p11 6= 1, then α̂p = (PT )−1α̂∗ would be an unbiased

estimator for α. Using the plug-in estimator P̂ for P, estimated on the test set,
the following estimator for α is obtained:

α̂p =
α̂∗ + p̂00 − 1

p̂00 + p̂11 − 1
. (12)

It is known that the estimator α̂p is consistent (asymptotically unbiased) for
α, see [1]. In [7], the variance of this estimator is analysed for an arbitrary
number of classes. For the binary case, a simple analytic expression for the bias
and variance of α̂p for finite datasets has not been given, as far as we know.
Therefore, we have derived the bias and variance for finite datasets, yielding the
following result.
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Theorem 2. The bias of α̂p as estimator for α is given by

B [α̂p] =
p00 − p11

n(p00 + p11 − 1)
+O

(
1

n2

)
. (13)

The variance of α̂p is given by

V [α̂p] =
(1− α)p00(1− p00)

[
1 + α

n(1−α)

]
+ αp11(1− p11)

[
1 + 1−α

nα

]

n(p00 + p11 − 1)2

+O

(
max

[
1

n2
,

1

N

])
. (14)

Proof. See the Appendix.

2.5 Calibration probabilities

Let C be the column-normalized confusion matrix of the machine learning al-
gorithm that we have trained. That is, entry cij is the probability that the true
class of a data point is j given that the algorithm has predicted class i. The prob-
abilities cij are referred to as calibration probabilities [11]. The first element of
the vector Cα̂∗ is an unbiased estimator for α, if C is known.

Using the plug-in estimator Ĉ for C, which is estimated on the test dataset
analogously to P̂, the following estimator α̂c for α is obtained:

α̂c = α̂∗
n11
n+1

+ (1− α̂∗) n10
n+0

, (15)

in which each nij and n+j should be considered as random variables. It has been
shown that α̂c is a consistent estimator for α [1]. Under the assumptions we have
made in this paper, it can be shown that α̂c is in fact an unbiased estimator for
α. To the best of our knowledge, we are also the first to give an approximation
(up to terms of order 1/n2) of the variance of α̂c. Both results are summarized
in the following theorem.

Theorem 3. The calibration estimator α̂c is an unbiased estimator for α:

B [α̂c] = 0. (16)

The variance of α̂c is equal to the following expression:

V (α̂c) =

[
(1− α)(1− p00) + αp11

n
+

(1− α)p00 + α(1− p11)

n2

]

×
[

αp11
(1− α)(1− p00) + αp11

(
1− αp11

(1− α)(1− p00) + αp11

)]

+

[
(1− α)p00 + α(1− p11)

n
+

(1− α)(1− p00) + αp11
n2

]

×
[

(1− α)p00
(1− α)p00 + α(1− p11)

(
1− (1− α)p00

(1− α)p00 + α(1− p11)

)]

+O

(
max

[
1

n3
,

1

Nn

])
. (17)
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Proof. See the Appendix.

Hereby, the overview of the five estimators for α is complete. The expressions
that we have derived for the bias and variance of these five estimators will now
be used to compare the (root) mean squared error of the five estimators, both
theoretically as well as by means of simulation studies.

3 Results

The aim of this section is to derive empirically which of the five estimators of α
that we presented in Section 2 has the lowest MSE, and under which conditions.
For a given population size N , the MSE of each estimator depends on four
parameters (i.e, α, p00, p11, n), so visualizations would have to be 5-dimensional.
To reduce dimensions, we will first present a simulation study in which all four
parameters are fixed. For the fixed parameter setting, the sampling distributions
of the estimators are compared using boxplots. Second, we will fix several values
of α and n and use plots to compare the MSE of the estimators for varying p00
and p11. The latter analysis will already be sufficient in order to reach a final
conclusion on which estimator has the lowest MSE.‖

3.1 Sampling distributions of the estimators

Here, we present two simple simulation studies to gain some intuition for the
difference in the sampling distributions of the five estimators. In the first simu-
lation study, we consider a class-balanced dataset, that is, α = 0.5, with a small
test dataset of size n = 1000, a large population dataset N = 3 × 105 and a
rather poor classifier having classification probabilities p00 = 0.6 and p11 = 0.7.
We deliberately choose p00 6= p11, as otherwise the classify-and-count estimator
α̂∗ would be unbiased: (p00, p11) would be on the line between (1 − α, α) and
(1, 1), see also Equation (5).

Table 2 summarizes the bias, variance and root mean squared error (RMSE),
computed using the analytic approximations presented in Section 2. The classify-
and-count estimator is highly biased and therefore it has a high RMSE, despite
having the lowest variance of all estimators. The RMSE of the classify-and-count
estimator can indeed be improved by subtracting an estimate of the bias (α̂b).
The subtraction reduces the absolute bias and only slightly increases the vari-
ance. A further bias reduction is obtained by the misclassification estimator α̂p.
However, inverting the row-normalized confusion matrix P (that is, the misclas-
sification probabilities) for values of p00 and p11 close to p00+p11 = 1 significantly
increases the variance of the estimator, leading to the highest RMSE of all es-
timators considered. Finally, the calibration estimator α̂c is unbiased and has

‖The results in this section have been obtained using the statistical software R. All
visualizations have been implemented in a Shiny dashboard, which in addition includes
interactive 3D-plots of the RMSE surface for each of the estimators. The code can be
retrieved from https://github.com/kevinkloos/Misclassification-Bias.
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the lowest variance among the estimators that make use of the test dataset. In
particular, note that the variance is also lower than that of the baseline estima-
tor. In this example, the estimator based on the calibration probabilities has the
lowest RMSE, and it is the only estimator with a lower RMSE than the baseline
estimator α̂a.

Table 2: A comparison of the bias, variance and RMSE of each of the five esti-
mators for α, where α = 0.5, p00 = 0.6, p11 = 0.7, n = 1000 and N = 3× 105.

Bias Variance RMSE
Estimator Symbol ×10−2 ×10−4 ×10−2

Baseline α̂a 0.000 2.500 1.581

Classify-and-count α̂∗ 5.000 0.000 5.000
Subtracted-bias α̂b -3.500 2.244 3.807

Misclassification α̂p -0.033 25.025 5.003
Calibration α̂c 0.000 2.275 1.508

To gain insight in the sampling distribution of the estimators, in addition
to the metrics presented in Table 2, we simulated a large number R = 10000 of
confusion matrices for datasets of size n = 1000 and N = 3×105. Each confusion
matrix was created as follows. First, take a random draw from a Bin(N,α)-
distribution, resulting in a number N1+. Then, take a random draw from a
Bin(N1+, p11)-distribution to obtain N11 and a random draw from a Bin(N −
N+1, p00)-distribution to obtain N00. This computes the theoretical confusion
matrix for the target population. Use this confusion matrix to draw a sample
from a multivariate hypergeometric distribution, with its parameters from the
drawn theoretical confusion matrix. These draws precisely give the number of
true and false positives and negatives needed to fill a confusion matrix. Each
confusion matrix can be used to compute the five estimators. Repeating this
procedure R = 10000 times gave rise to the sampling distributions of the five
estimators as presented in Figure 1. It nicely visualizes the bias and variance
of the five estimators, supporting the results in Table 2. In addition, it shows
that, due to the bias, the variances of the classify-and-count estimator α̂∗ and
the subtracted-bias estimator α̂b cannot be used to obtain reliable confidence
intervals for α.

In the second simulation study, we consider a highly imbalanced dataset,
namely α = 0.98. We again assume that the available test dataset has size
n = 1000, but we assume a classifier having classification probabilities p00 = 0.94
and p11 = 0.97. Table 3 summarizes the bias, variance and RMSE of each of the
estimators and Figure 2 shows the sampling distributions of each of the estima-
tors. It can be noticed that subtracted-bias estimator and the misclassification
estimator both have estimates of α that exceed 1. It is obvious that such values
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Fig. 1: The boxplots show the sampling distribution of the estimators for α,
where α = 0.5, p00 = 0.6, p11 = 0.7, n = 1000 and N = 3× 105. The true value
of α is highlighted by a vertical line.

cannot occur in the population. For the method with the misclassification prob-
abilities, this effect gets stronger when p00 + p11 gets closer to 1. Furthermore,
the baseline estimator performs well compared to the other estimators when the
dataset is highly imbalanced: its RMSE is slightly higher than the RMSE of the
method with calibration probabilities and much lower than the method with the
misclassification probabilities. Finally, it is shown that the classify-and-count
estimator is highly biased, even though p00 and p11 are both fairly close to 1.

Table 3: A comparison of the bias, variance and RMSE of each of the five esti-
mators for α, where α = 0.98, p00 = 0.94, p11 = 0.97, n = 1000 and N = 3×105.

Bias Variance RMSE
Method Symbol ×10−2 ×10−5 ×10−3

Baseline α̂a 0.000 1.960 4.427

Classify-and-count α̂∗ -2.820 0.000 28.200
Subtracted-bias α̂b 0.254 3.377 6.342

Misclassification α̂p -0.003 3.587 5.989
Calibration α̂c 0.000 1.289 3.591
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Fig. 2: The boxplots show the sampling distribution of the estimators for α,
where α = 0.98, p00 = 0.94, p11 = 0.97, n = 1000 and N = 3 × 105. The true
value of α is highlighted by a vertical line.

3.2 Finding the optimal estimator

The aim of this subsection is to find the optimal estimator, i.e., the estimator
with the lowest RMSE, for every combination of values of the parameters α,
p00, p11 and n. First, suppose that (p00, p11) is close to the line in the plane
through the points (1 − α, α) and (1, 1). As noted before, it implies that the
classify-and-count estimator α̂∗ has low bias. Consequently, the subtracted-bias
estimator α̂b has low bias as well. Thus, these two estimators will have the lowest
RMSE in the described region, whose size decreases as n increases. Figure 3
visualizes the described region for α = 0.2 and two different values of n. We
remark that the biased estimators α̂∗ and α̂b perform worse (relative to the
other estimators) when the sample size n of the test dataset increases. The
biased methods, like Classify-and-count and Subtracted-bias, perform well when
the classification probabilities are high for the largest group.

As we have seen in both Table 2 and Table 3, the calibration estimator α̂c
competes with the baseline estimator in having the lowest RMSE. In general,
the calibration estimator will have lower RMSE if the classification probabilities
p00 and p11 are higher, while the baseline estimator does not depend on these
classification probabilities. In a neighbourhood of p00 = p11 = 0.5, the baseline
estimator will always have lower RMSE than the calibration estimator. However,
for every α and n, there must exist a curve in the (p00, p11)-plane beyond which
the calibration estimator will have lower RMSE than the baseline estimator. The
left-hand panels in Figure 4 show this curve for α = 0.2 and two different values
of n. For larger values of n, the curve where the calibration estimator performs
better than the baseline estimator gets closer to p00 = p11 = 0.5 and therefore
covers a larger area in the (p00, p11)-plane.
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Fig. 3: For each coordinate (p00, p11), the depicted color indicates which estimator
has the lowest RMSE, considering only the classify-and-count estimator (green),
the subtracted-bias estimator (orange) and the calibration estimator (purple). In
the left panel , we have set α = 0.2 and n = 300, whereas α = 0.2 and n = 3000
in the right panel. The red and green regions are smaller in the right panel, as
the variance of the calibration estimator is decreasing in n, while the bias of the
classify-and-count estimator and of the subtracted-bias estimator do not depend
on n.

Table 2 and Table 3 have shown that the misclassification estimator only
performs well if p00 and p11 are high, which is confirmed by the expression of the
bias and variance: both have a singularity at p00 + p11 = 1, see Equations (13)
and (14). The right-hand panels in Figure 4 show, for α = 0.2 and two different
values of n, the curve in the (p00, p11)-plane beyond which the misclassification
estimator has lower RMSE than the baseline estimator. Observe that an increase
in the size n of the test dataset does not have much impact on the position of
the curve. The reason is that the misclassification estimator has a singularity
at p00 = p11 = 0.5. The shape of the curve also depends on the value of α.
If α = 0.8 instead of 0.2, the curves are line-symmetric in the line p00 = p11.
The curve is also line symmetric in p00 = p11 for α = 0.5. The area where the
misclassification estimator performs better than the baseline estimator decreases
when α gets closer towards 0 or 1. The main reason why this happens is that
the variance of the baseline estimator decreases fast when α gets closer towards
0 or 1. Thus, the baseline estimator performs better than the misclassification
estimator either if the classifier performs badly in general or performs badly in
classifying the largest group.

The final analysis of this paper is to compare the calibration estimator and
the misclassification estimator for high values of p00 and p11. In Theorem 4 it is
proven that, for all possible combinations of α and sufficiently large n, the MSE
of the calibration estimator is consistently lower than that of the misclassification
estimator.
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Fig. 4: For each coordinate (p00, p11), the depicted color indicates which esti-
mate has the lowest RMSE, considering only the baseline estimator (green), the
calibration estimator (orange) and the misclassification estimator (purple). The
top-row panels consider α = 0.2 and n = 300, while the bottom-row panels
consider α = 0.2 and n = 3000.

Theorem 4. Let M̃SE[α̂p] and M̃SE[α̂c] denote the approximate mean squared
errors, up to terms of order 1/n, of the misclassification estimator and the cali-
bration estimator, respectively. It holds that:

M̃SE[α̂p]− M̃SE[α̂c] =

[
(1− α)p00(1− p00) + αp11(1− p11)

]2

(p00 + p11 − 1)2β(1− β)
, (18)

in which β := (1− α)(1− p00) + αp11.

Proof. See the Appendix.

Thus, neglecting terms of order 1/n2 and higher, the result implies that the
calibration estimator has a lower mean squared error than the misclassification
estimator, except that both are equal if and only if p00 = p11 = 1. (Note that
0 < β < 1.)

We do remark that the difference in MSE is large in particular for values of
p00 and p11 close to 1

2 . More specifically, it diverges when p00 + p11 → 1. It is
the result of the misclassification estimator having a singularity at p00 + p11 = 1
(see Equation (14)), while the variance of the calibration estimator is bounded.
An unpleasant consequence of the singularity at p00 + p11 = 1 is that, for fixed
n and α, the probability that α̂p takes values outside the interval [0, 1] increases
as p00 + p11 → 1; see [14] for a discussion and a possible solution.

4 Conclusion and Discussion

In this paper, we have studied the effect of classification errors on five estimators
of the base rate parameter α that are obtained from machine learning algorithms.
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In general, a straightforward classify-and-count estimator will lead to biased
estimates and some form of bias correction should be considered. As reducing
bias might increase variance, we evaluated the (root) mean squared error (MSE)
of the five estimators, both theoretically as well as numerically.

From our results we may draw the following main (three-part) conclusion
regarding which estimator for α has lowest mean squared error. First, when
dealing with small test datasets and rather poor algorithms, that is p00 and p11
both close to 0.5, the baseline estimator α̂a has the lowest MSE. Second, when
dealing with algorithms for which the classification probabilities p00 and p11 are
in a small neighbourhood around the line (p11 − 1)α + (1 − p00)(1 − α) = 0
in the (p00, p11)-plane, the classify-and-count estimator and the subtracted-bias
estimator will have the lowest MSE. As the size of the test dataset increases,
the size of that neighbourhood decreases. Third, in any other situation, the
calibration estimator will have the lowest MSE. In practice, the test dataset will
have to be used to determine which of the three scenarios applies to the data
and the algorithm at hand. It is an additional estimation problem that we have
not discussed in this paper.

We would like to close the paper by pointing out three interesting directions
for future research. First, the results could be generalized to multi-class classifi-
cation problems. The theoretical derivations of the bias and variance are more
complicated and involve matrix-vector notation, but the proof strategy is simi-
lar. However, it is more challenging to compare the MSE of the five estimators
visually in the multi-class case.

Second, the assumptions that we have made could be relaxed. In particular,
a trained and implemented machine learning model is, in practice, often used
over a longer period of time. A shift in the base rate parameter α, also known as
prior probability shift [15], is then inevitable. Consequently, we may no longer
assume that the conditional distribution of the class label given the features in
the test dataset is similar to that in the population. It implies that the calibration
estimator is no longer unbiased, which might have a significant effect on our main
conclusion.

Third and finally, a combination of estimators might have a substantially
lower MSE than that of the individual estimators separately. Therefore, it might
be interesting to study different methods of model averaging applied to the prob-
lem of misclassification bias. It could be fruitful especially when the assumptions
that we have made are relaxed.
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Appendix

This appendix contains the proofs of the theorems presented in the paper entitled
“Comparing Correction Methods for Misclassification Bias”. Recall that we have
assumed a population of size N in which a fraction α := N1+/N belongs to the
class of interest, referred to as the class labelled as 1. We assume that a binary
classification algorithm has been trained that correctly classifies a data point
that belongs to class i ∈ {0, 1} with probability pii > 0.5, independently across
all data points. In addition, we assume that a test set of size n� N is available
and that it can be considered a simple random sample from the population.
The classification probabilities p00 and p11 are estimated on that test set as
described in Section 2. Finally, we assume that the classify-and-count estimator
α̂∗ is distributed independently of p̂00 and p̂11, which is reasonable (at least as
an approximation) when n� N .

It may be noted that the estimated probabilities p̂11 and p̂00 defined in Sec-
tion 2 cannot be computed if n1+ = 0 or n0+ = 0. Similarly, the calibration
probabilities c11 and c00 cannot be estimated if n+1 = 0 or n+0 = 0. We assume
here that these events occur with negligible probability. This will be true when
n is sufficiently large so that nα� 1 and n(1− α)� 1.

Preliminaries

Many of the proofs presented in this appendix rely on the following two math-
ematical results. First, we will use univariate and bivariate Taylor series to ap-
proximate the expectation of non-linear functions of random variables. That is,
to estimate E[f(X)] and E[g(X,Y )] for sufficiently differentiable functions f
and g, we will insert the Taylor series for f and g at x0 = E[X] and y0 = E[Y ]
up to terms of order 2 and utilize the linearity of the expectation. Second, we
will use the following conditional variance decomposition for the variance of a
random variable X:

V (X) = E[V (X | Y )] + V (E[X | Y ]). (19)

The conditional variance decomposition follows from the tower property of con-
ditional expectations [10]. Before we prove the theorems presented in the paper,
we begin by proving the following lemma.

Lemma 1. The variance of the estimator p̂11 for p11 estimated on the test set
is given by

V (p̂11) =
p11(1− p11)

nα

[
1 +

1− α
nα

]
+O

(
1

n3

)
. (20)

Similarly, the variance of p̂00 is given by

V (p̂00) =
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
. (21)

Moreover, p̂11 and p̂00 are uncorrelated: C(p̂11, p̂00) = 0.
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Proof (of Lemma 1). We approximate the variance of p̂00 using the conditional
variance decomposition and a second-order Taylor series, as follows:

V (p̂00) = V

(
n00
n0+

)

= En0+

[
V

(
n00
n0+

| n0+
)]

+ Vn0+

[
E

(
n00
n0+

| n0+
)]

= En0+

[
1

n20+
V (n00 | n0+)

]
+ Vn0+

[
1

n0+
E(n00 | n0+)

]

= En0+

[
n0+p00(1− p00)

n20+

]
+ Vn0+

[
n0+p00
n0+

]

= En0+

[
1

n0+

]
p00(1− p00)

=

[
1

E[n0+]
+

1

2

2

E[n0+]3
× V [n0+]

]
p00(1− p00) +O

(
1

n3

)

=
p00(1− p00)

E[n0+]

[
1 +

V [n0+]

E[n0+]2

]
+O

(
1

n3

)

=
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
.

The variance of p̂11 is approximated in the exact same way.
Finally, to evaluate C(p̂11, p̂00) we use the analogue of (19) for covariances:

C(p̂11, p̂00) = C

(
n11
n1+

,
n00
n0+

)

= En1+,n0+

[
C

(
n11
n1+

,
n00
n0+

| n1+, n0+
)]

+ Cn1+,n0+

[
E

(
n11
n1+

| n1+, n0+
)
, E

(
n00
n0+

| n1+, n0+
)]

= En1+,n0+

[
1

n1+n0+
C(n11, n00 | n1+, n0+)

]

+ Cn1+,n0+

[
1

n1+
E(n11 | n1+),

1

n0+
E(n00 | n0+)

]
.

The second term is zero as before. The first term also vanishes because, condi-
tional on the row totals n1+ and n0+, the counts n11 and n00 follow independent
binomial distributions, so C(n11, n00 | n1+, n0+) = 0.

Note: in the remainder of this appendix, we will not add explicit subscripts
to expectations and variances when their meaning is unambiguous.

Subtracted-bias estimator

We will now prove the bias and variance approximations for the subtracted-bias
estimator α̂b that was defined in Equation (9).
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Proof (of Theorem 1). The bias of α̂b is given by

B(α̂b) = E
[
α̂? − B̂[α̂?]

]
− α

= E[α̂? − α]− E
[
B̂[α̂?]

]

= B[α̂?]− E
[
B̂[α̂?]

]

= [α(p00 + p11 − 2) + (1− p00)]− E [α̂?(p̂00 + p̂11 − 2) + (1− p̂00)] .

Because α̂∗ and (p̂00 + p̂11 − 2) are assumed to be independent, the expectation
of their product equals the product of their expectations:

B(α̂b) = α(p00 + p11 − 2) + (1− p00)− E[α̂?](p00 + p11 − 2)− (1− p00)

= (α− E[α̂?])(p00 + p11 − 2)

= B[α̂?](2− p00 − p11)

= (1− p00)(2− p00 − p11)− α(p00 + p11 − 2)2.

This proves the formula for the bias of α̂b as estimator for α. To approximate
the variance of α̂b, we apply the conditional variance decomposition (19) condi-
tional on α̂∗ and look at the two resulting terms separately. First, consider the
expectation of the conditional variance:

E [V (α̂b | α̂∗)] = E [V (α̂∗(3− p̂00 − p̂11)− (1− p̂00) | α̂∗)]
= E

[
V (α̂∗(3− p̂00 − p̂11) | α̂∗) + V (1− p̂00 | α̂∗)
− 2C(α̂∗(3− p̂00 − p̂11), 1− p̂00 | α̂∗)

]

= E
[
(α̂∗)2V (3− p̂00 − p̂11 | α̂∗) + V (1− p̂00 | α̂∗)
− 2α̂∗C(3− p̂00 − p̂11, 1− p̂00 | α̂∗)

]

= E
[
(α̂∗)2 [V (p̂00) + V (p̂11)] + V (p̂00)− 2α̂∗V (p̂00)

]

= E
[
(α̂∗)2

]
[V (p̂00) + V (p̂11)] + V (p̂00)− 2E [α̂∗]V (p̂00).

In the penultimate line, we used that C(p̂11, p̂00) = 0. The second moment

E
[
(α̂∗)2

]
can be written as E [α̂∗]2 + V (α̂∗). Because V (α̂∗) is of order 1/N , it

can be neglected compared to E [α̂∗]2, which is of order 1. In particular, we find
that the expectation of the conditional variance equals:

E [V (α̂b | α̂∗)] = E [(α̂∗)]2 [V (p̂00) + V (p̂11)] + V (p̂00)− 2E [α̂∗]V (p̂00) +O

(
1

N

)

= V (p̂00) [E [α̂∗]− 1]
2

+ V (p̂11)E [α̂∗]2 +O

(
1

N

)
.

Next, the variance of the conditional expectation can be seen to be equal the
following:

V [E(α̂b | α̂∗)] = V [E(α̂∗(3− p̂00 − p̂11)− (1− p̂00) | α̂∗)]
= V [α̂∗E(3− p̂00 − p̂11 | α̂∗)− E(1− p̂00 | α̂∗)]
= V (α̂∗)(3− p00 − p11)2.
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Because V (α̂∗) is of order 1/N , it can be neglected in the final formula. Fur-
thermore, the variances of p̂00 and p̂11 can be written out using the result from
Lemma 1:

V (α̂b) =
[α(p00 + p11 − 1)− p00]

2
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]

+
[α(p00 + p11 − 1) + (1− p00)]

2
p11(1− p11)

nα

[
1 +

1− α
nα

]

+O

(
max

[
1

n3
,

1

N

])
.

This concludes the proof of Theorem 1.

Misclassification estimator

We will now prove the bias and variance approximations for the misclassification
estimator α̂p as defined in Equation (12).

Proof (of Theorem 2). Under the assumption that α̂∗ is distributed indepen-
dently of (p̂00, p̂11), it holds that

E(α̂p) = E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
+ E

[
E

(
α̂∗

p̂00 + p̂11 − 1

∣∣∣∣ α̂∗
)]

= E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
+ E(α̂∗)E

(
1

p̂00 + p̂11 − 1

)
. (22)

E(α̂∗) is known from (4). To evaluate the other two expectations, we use a
second-order Taylor series approximation. The first- and second-order partial
derivatives of f(x, y) = 1/(x + y − 1) and g(x, y) = (x − 1)/(x + y − 1) =
1− [y/(x+ y − 1)] are given by:

∂f

∂x
=
∂f

∂y
=

−1

(x+ y − 1)2
, (23)

∂2f

∂x2
=
∂2f

∂y2
=

2

(x+ y − 1)3
,

∂g

∂x
=

y

(x+ y − 1)2
, (24)

∂g

∂y
=
−(x− 1)

(x+ y − 1)2
, (25)

∂2g

∂x2
=

−2y

(x+ y − 1)3
,

∂2g

∂y2
=

2(x− 1)

(x+ y − 1)3
.
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Now also using that C(p̂11, p̂00) = 0, we obtain for the first expectation:

E

(
1

p̂00 + p̂11 − 1

)
=

1

p00 + p11 − 1
+
V (p̂00) + V (p̂11)

(p00 + p11 − 1)3
+O(n−2)

=
1

p00 + p11 − 1


1 +

p00(1−p00)
n(1−α) + p11(1−p11)

nα

(p00 + p11 − 1)2


+O(n−2).

(26)

Here, we have included only the first term of the approximations to V (p̂00) and
V (p̂11) from Lemma 1, since this suffices to approximate the bias up to terms of
order O(1/n). Similarly, for the second expectation we obtain:

E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
=

p00 − 1

p00 + p11 − 1
+

(p00 − 1)V (p̂11)− p11V (p̂00)

(p00 + p11 − 1)3
+O(n−2)

=
p00 − 1

p00 + p11 − 1

[
1 + p11

1−p11
nα + p00

n(1−α)
(p00 + p11 − 1)2

]
+O(n−2). (27)

Using (22), (4), (26), and (27), we conclude that:

E(α̂p) =
α(p00 + p11 − 1)− (p00 − 1)

p00 + p11 − 1


1 +

p00(1−p00)
n(1−α) + p11(1−p11)

nα

(p00 + p11 − 1)2




+
p00 − 1

p00 + p11 − 1

[
1 + p11

1−p11
nα + p00

n(1−α)
(p00 + p11 − 1)2

]
+O

(
1

n2

)
.

From this, it follows that an approximation to the bias of α̂p that is correct up
to terms of order O(1/n) is given by:

B(α̂p) =
α(p00 + p11 − 1)− (p00 − 1)

n(p00 + p11 − 1)3

[
p00(1− p00)

1− α +
p11(1− p11)

α

]

+
(p00 − 1)p11

n(p00 + p11 − 1)3

[
1− p11
α

+
p00

1− α

]
+O

(
1

n2

)
.

By expanding the products in this expression and combining similar terms, the
expression can be simplified to:

B(α̂p) =
p11(1− p11)− p00(1− p00)

n(p00 + p11 − 1)2
+O

(
1

n2

)
.

Finally, using the identity p11(1−p11)−p00(1−p00) = (p00 +p11−1)(p00−p11),
we obtain the required result for B(α̂p).

To approximate the variance of α̂p, we apply the conditional variance decom-
position conditional on α̂∗ and look at the two resulting terms separately. First,
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consider the variance of the conditional expectation:

V [E(α̂p | α̂∗)] = V

[
E

(
α̂∗

1

p̂00 + p̂11 − 1
+

p̂00 − 1

p̂00 + p̂11 − 1
| α̂∗

)]

= V

[
α̂∗

1

p00 + p11 − 1

]

=
1

(p00 + p11 − 1)2
V [α̂∗] = O

(
1

N

)
, (28)

where in the last line we used (6). Note: the factor 1/(p00 +p11−1)2 can become
arbitrarily large in the limit p00 + p11 → 1. It will be seen below that this
same factor also occurs in the lower-order terms of V (α̂p); hence, the relative
contribution of (28) remains negligible even in the limit p00 + p11 → 1.

Next, we compute the expectation of the conditional variance.

E [V (α̂p | α̂∗)] = E

[
V

(
α̂∗

1

p̂00 + p̂11 − 1
+

p̂00 − 1

p̂00 + p̂11 − 1
| α̂?

)]

= E

[
V

(
α̂∗

1

p̂00 + p̂11 − 1
| α?

)
+ V

(
p̂00 − 1

p̂00 + p̂11 − 1
| α̂?

)

+ 2C

(
α̂∗

1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1
| α̂?

)]

= E
[
(α̂∗)2

]
V

[
1

p̂00 + p̂11 − 1

]
+ V

[
p̂00 − 1

p̂00 + p̂11 − 1

]

+ 2E [α̂?]C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]

= E [α̂?]
2

[
1 +O

(
1

N

)]
V

[
1

p̂00 + p̂11 − 1

]
+ V

[
p̂00 − 1

p̂00 + p̂11 − 1

]

+ 2E [α̂?]C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
. (29)

To approximate the variance and covariance terms, we use a first-order Taylor
series. Using the partial derivatives in (23), (24) and (25), we obtain:

V

[
1

p̂00 + p̂11 − 1

]
=
V (p̂00) + V (p̂11)

(p00 + p11 − 1)4
+O(n−2)

V

[
p̂00 − 1

p̂00 + p̂11 − 1

]
=

V (p̂00)(p11)2

(p00 + p11 − 1)4
+
V (p̂11)(1− p00)2

(p00 + p11 − 1)4
+O(n−2)

C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
=

V (p̂00)(−p11)

(p00 + p11 − 1)4
+
V (p̂11)(p00 − 1)

(p00 + p11 − 1)4
+O(n−2).
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Substituting these terms into Formula (29) and accounting for Formula (28)
yields:

V (α̂p) =
V (p̂00)

[
E [α̂?]

2 − 2p11E [α̂?] + p211

]

(p00 + p11 − 1)4

+
V (p̂11)

[
E [α̂?]

2 − 2(1− p00)E [α̂?] + (1− p00)2
]

(p00 + p11 − 1)4
+O

(
max

[
1

n2
,

1

N

])

=
V (p̂00) [E [α̂?]− p11]

2

(p00 + p11 − 1)4
+
V (p̂11) [E [α̂?]− (1− p00)]

2

(p00 + p11 − 1)4
+O

(
max

[
1

n2
,

1

N

])

=
V (p̂00)(1− α)2

(p00 + p11 − 1)2
+

V (p̂11)α2

(p00 + p11 − 1)2
+O

(
max

[
1

n2
,

1

N

])
.

Finally, inserting the expressions for V (p̂00) and V (p̂11) from Lemma 1 yields:

V (α̂p) =

p00(1−p00)
n(1−α)

[
1 + α

n(1−α)

]
(1− α)2

(p00 + p11 − 1)2
+

p11(1−p11)
nα

[
1 + 1−α

nα

]
α2

(p00 + p11 − 1)2

+O

(
max

[
1

n2
,

1

N

])
,

from which expression (14) follows. This concludes the proof of Theorem 2.

Calibration estimator

We will now prove the bias and variance approximations for the calibration
estimator α̂c that was defined in Equation (15).

Proof (of Theorem 3). To compute the expected value of α̂c, we first compute
its expectation conditional on the 4-vector N = (N00, N01, N10, N11):

E(α̂c |N) = E

[
α̂∗

n11
n+1

+ (1− α̂∗) n10
n+0

|N
]

= α̂∗E

[
n11
n+1

|N
]

+ (1− α̂∗)E
[
n10
n+0

|N
]

= α̂∗E

[
E

(
n11
n+1

|N , n+1

)
|N

]

+ (1− α̂∗)E
[
E

(
n10
n+0

|N , n+0

)
|N

]

=
N+1

N
E

[
1

n+1
n+1

N11

N+1
|N

]
+
N+0

N
E

[
1

n+0
n+0

N10

N+0
|N

]

=
N11

N
+
N10

N

=
N1+

N
= α. (30)
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By the tower property of conditional expectations, it follows that E[α̂c] =
E [E(α̂c |N)] = α. This proves that α̂c is an unbiased estimator for α.

To compute the variance of α̂c, we use the conditional variance decomposi-
tion, again conditioning on the 4-vector N . We remark that N0+ and N1+ are
deterministic values, but that N+0 and N+1 are random variables. As shown
above in Equation (30), the conditional expectation is deterministic, hence it
has no variance: V (E[α̂c | N ]) = 0. The conditional variance decomposition
then simplifies to the following:

V (α̂c) = E [V (α̂c |N)] . (31)

The conditional variance V (α̂c |N) can be written as follows:

V [α̂c |N ] = V

[
α̂∗

n11
n+1

+ (1− α̂∗) n10
n+0

|N
]

= (α̂∗)2V

[
n11
n+1

|N
]

+ (1− α̂∗)2V
[
n10
n+0

|N
]

+ 2α̂∗(1− α̂∗)C
[
n11
n+1

,
n10
n+0

|N
]
. (32)

We will consider these terms separately. First, the variance of n11/n+1 can be
computed by applying an additional conditional variance decomposition:

V

[
n11
n+1

|N
]

= V

[
E

(
n11
n+1

|N , n+1

)
|N

]
+ E

[
V

(
n11
n+1

|N , n+1

)
|N

]
.

The first term is zero, which can be shown as follows:

V

[
E

(
n11
n+1

|N , n+1

)]
= V

[
1

n+1
E(n11 |N , n+1) |N

]

= V

[
1

n+1
n+1

N11

N+1
|N

]

= V

[
N11

N+1
|N

]
= 0.

For the second term, we find under the assumption that n� N :

E

[
V

(
n11
n+1

|N , n+1

)
|N

]
= E

[
1

n2+1

V (n11 |N , n+1) |N
]

= E

[
1

n2+1

n+1
N11

N+1
(1− N11

N+1
) |N

]

= E

[
1

n+1
|N

]
N11N01

N2
+1

.
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The expectation of 1
n+1

can be approximated with a second-order Taylor series:

V

[
n11
n+1

|N
]

=

[
1

E[n+1 |N ]
+

1

2

2

E[n+1 |N ]3
V [n+1 |N ]

]
N11N01

N2
+1

+O(n−3)

=
1

E[n+1 |N ]

[
1 +

V [n+1 |N ]

E[n+1 |N ]2

]
N11N01

N2
+1

+O(n−3)

=
1

nα̂∗

[
1 +

1− α̂∗
nα̂∗

]
N11N01

N2
+1

+O(n−3). (33)

The variance of n10/n+0 can be approximated in the same way, which yields the
following expression:

V

[
n10
n+0

|N
]

=
1

n(1− α̂∗)

[
1 +

α̂∗

n(1− α̂∗)

]
N00N10

N2
+0

+O(n−3). (34)

Finally, it can be shown that the covariance in the final term is equal to zero:

C

[
n11
n+1

,
n10
n+0

|N
]

= E

[
C

(
n11
n+1

,
n10
n+0

|N , n+0, n+1

)
|N

]

+ C

[
E

(
n11
n+1

|N , n+0, n+1

)
, E

(
n10
n+0

|N , n+0, n+1

)
|N

]

= E

[
1

n+0n+1
C (n11, n10 |N , n+0, n+1) |N

]

+ C

[
1

n+1
E (n11 |N , n+0, n+1) ,

1

n+0
E (n10 |N , n+0, n+1) |N

]

= 0 + C

[
1

n+1
n+1

N11

N+1
,

1

n+0
n+0

N10

N+0
|N

]
= 0. (35)

Combining Formulas (33), (34) and (35) with (32) gives:

V [α̂c |N ] =
N2

+1

N2

1

nα̂∗

[
1 +

1− α̂∗
nα̂∗

]
N11N01

N2
+1

+
N2

+0

N2

1

n(1− α̂∗)

[
1 +

α̂∗

n(1− α̂∗)

]
N00N10

N2
+0

+O(n−3)

=
1

nα̂∗

[
1 +

1− α̂∗
nα̂∗

]
N11N01

N2

+
1

n(1− α̂∗)

[
1 +

α̂∗

n(1− α̂∗)

]
N00N10

N2
+O(n−3).

Recall from Formula (31) that V [α̂c] = E [V [α̂c |N ]] = E [E [V [α̂c |N ] | N+1]].
Hence,

V [α̂c] = E

[
1

nα̂∗

(
1 +

1− α̂∗
nα̂∗

)
E

(
N11N01

N2
| N+1

)
(36)

+
1

n(1− α̂∗)

(
1 +

α̂∗

n(1− α̂∗)

)
E

(
N00N10

N2
| N+1

)]
+O(n−3).
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To evaluate the expectations in this expression, we observe that, conditional
on the column total N+1, N11 is distributed as Bin(N+1, c11), where c11 is a
calibration probability as defined in Section 2.5. Hence,

E [N11 | N+1] = N+1c11 =
N+1αp11

(1− α)(1− p00) + αp11
(37)

V [N11 | N+1] = N+1c11(1− c11).

Similarly, since N = N+1 +N+0 is fixed,

E [N00 | N+1] = N+0c00 =
N+0(1− α)p00

(1− α)p00 + α(1− p11)
(38)

V [N00 | N+1] = N+0c00(1− c00).

Using these results, we obtain:

E

[
N11N01

N2
| N+1

]
=

1

N2
E [N11N01 | N+1]

=
1

N2
E [N11(N+1 −N11) | N+1]

=
1

N2

[
N+1E [N11 | N+1]− E

[
N2

11 | N+1

]]

=
1

N2

[
N+1E [N11 | N+1]− V [N11 | N+1]− E [N11 | N+1]

2
]

=
1

N2

[
N2

+1c11 −N+1c11(1− c11)−N2
+1c

2
11

]

=
N2

+1

N2
c11(1− c11) +O

(
1

N

)
, (39)

and similarly

E

[
N00N10

N2
| N+1

]
=
N2

+0

N2
c00(1− c00) +O

(
1

N

)
. (40)

Substituting expressions (39) and (40) into (36) and noting thatN2
+1/N

2 = (α̂∗)2

and N2
+0/N

2 = (1− α̂∗)2, we obtain:

V [α̂c] = E

[
α̂∗

n

(
1 +

1− α̂∗
nα̂∗

)
c11(1− c11)

+
1− α̂∗
n

(
1 +

α̂∗

n(1− α̂∗)

)
c00(1− c00)

]
+O

(
max

[
1

n3
,

1

Nn

])

=

[
E(α̂∗)
n

+
1− E(α̂∗)

n2

]
c11(1− c11)

+

[
1− E(α̂∗)

n
+
E(α̂∗)
n2

]
c00(1− c00) +O

(
max

[
1

n3
,

1

Nn

])
.

Finally, substituting the expressions for E(α̂∗) from (4) and the expressions for
c11 and c00 from (37) and (38), the desired expression (17) is obtained. This
concludes the proof of Theorem 3.
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Comparing mean squared errors

To conclude, we present the proof of Theorem 4, which essentially shows that the
mean squared error (up to and including terms of order 1/n) of the calibration
estimator is lower than that of the misclassification estimator.

Proof (of Theorem 4). Recall that the bias of α̂p as an estimator for α is given
by

B [α̂p] =
p00 − p11

n(p00 + p11 − 1)
+O

(
1

n2

)
.

Hence, (B [α̂p])
2 = O(1/n2) is not relevant for M̃SE[α̂p]. It follows that M̃SE[α̂p]

is equal to the variance of α̂p up to order 1/n. From (14) we obtain:

M̃SE[α̂p] =
1

n

[
(1− α)p00(1− p00) + αp11(1− p11)

(p00 + p11 − 1)2

]
. (41)

Recall that α̂c is an unbiased estimator for α, i.e., B[α̂c] = 0. Also recall the
notation β = (1−α)(1− p00) +αp11. It follows from (17) that the variance, and
hence the MSE, of α̂c up to terms of order 1/n can be written as:

M̃SE[α̂c] =
1

n

[
β
αp11
β

(
1− αp11

β

)
+ (1− β)

(1− α)p00
1− β

(
1− (1− α)p00

1− β

)]

=
α(1− α)

n

[
(1− p00)p11

β
+
p00(1− p11)

1− β

]
. (42)

To prove Expression (18), first note that

(1− p00)p11
β

+
p00(1− p11)

1− β =
(1− p00)p11 + β(p00 − p11)

β(1− β)
. (43)

The numerator of this equation can be rewritten as follows:

(1− p00)p11 + β(p00 − p11)

= (1− p00)p11 + (1− α)p00(1− p00) + αp00p11 − (1− α)(1− p00)p11 − αp211
= (1− α)p00(1− p00) + αp00p11 + α(1− p00)p11 − αp211
= (1− α)p00(1− p00) + αp11(1− p11).

Note that the obtained expression is equal to the numerator of Expression (41).
Write T = (1−α)p00(1−p00) +αp11(1−p11) for that expression. It follows that

M̃SE[α̂p]− M̃SE[α̂c]

=
T

n(p00 + p11 − 1)2
− Tα(1− α)

nβ(1− β)

=
T

n(p00 + p11 − 1)2β(1− β)

[
β(1− β)− α(1− α)(p00 + p11 − 1)2

]
.
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Writing out the second factor in the last expression gives the following:

β(1− β)− α(1− α)(p00 + p11 − 1)2

= (1− α)2p00(1− p00) + α(1− α)
(

(1− p00)(1− p11) + p00p11

)
+ α2p11(1− p11)

− α(1− α)(p00 + p11 − 1)2

= (1− α)2p00(1− p00) + α(1− α)
(
p00(1− p00) + p11(1− p11)

)
+ α2p11(1− p11)

= (1− α)p00(1− p00) + αp11(1− p11)

= T.

This concludes the proof of Theorem 4.
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Abstract. Emotion recognition is an increasingly important sub-field in
artificial intelligence (AI). Advances in this field could drastically change
the way people interact with computers and allow for automation of
tasks that currently require a lot of manual work. For example, regis-
tering the emotion a subject expresses for a potential advert. Previous
work has shown that using multiple modalities, although challenging,
is very beneficial. Affective cues in audio and video may not occur si-
multaneously, and the modalities do not always contribute equally to
emotion. This work seeks to apply attention mechanisms to aid in the
fusion of audio and video, for the purpose of emotion recognition using
state-of-the-art techniques from artificial intelligence and, more specifi-
cally, deep neural networks. To achieve this, two forms of attention are
used. Embedding attention applies attention on the input of a modality-
specific model, allowing recurrent networks to consider multiple input
time steps. Bimodal attention fusion applies attention to fuse the output
of modality-specific networks. Combining both these attention mecha-
nisms yielded CCCs of 0.62 and 0.72 for arousal and valence respectively
on the RECOLA dataset used in AVEC 2016. These results are com-
petitive with the state-of-the-art, underlying the potential of attention
mechanisms in multimodal fusion for behavioral signals.

Keywords: Emotion Recognition · Multimodal · Neural Networks · At-
tention Mechanisms

1 Introduction

Emotion recognition as a field in machine learning tries to automate the identi-
fication of emotion in a human subject through various means, including com-
puter vision, signal processing and deep learning. This problem is non-trivial
as emotion in itself is an abstract concept that is hard to interpret, and thus
many different models have been proposed to describe it [9]. Interpretation of
emotional expressivity is hindered by the differences in expression between cul-
tures and even persons. Emotion recognition related experiments and data, often
come in the form of two types: acted and spontaneous. In the former category,
emotions are many times expressed by an actor, while the spontaneous category

BNAIC/BeneLearn 2020 130



2 J. Lucas et al.

mostly involves video clips of spontaneously expressed emotions. Spontaneous
emotion recognition is deemed to be harder since it deals with more genuine
expression of emotion, which tends to be more subtle than in the acted case.

The state-of-the-art approaches for emotion recognition make use of multiple
modalities. This entails that emotion will be predicted by looking at multiple
sources. Emotion can be expressed by, for example, both facial and vocal ex-
pression, and taking both of these sources into account leads to better perform-
ing models [7, 11, 4]. However, using multiple modalities is challenging. These
modalities usually differ in multiple aspects, such as their inherent distributions,
synchronization, sampling rate, dimensionality, etc.

This work aims to make use of the effectiveness of transfer learning by utiliz-
ing pre-trained networks on multiple modalities and fusing these using attention
mechanisms. For this purpose, a new method is proposed, that combines previ-
ous work in emotion recognition and neural attention to predict emotions in the
valence-arousal emotion spectrum.

1.1 Related Work

Work by Ghaleb et al. [4] proposed a framework, which uses metric learning and
combines multiple input modalities that showed an increase in performance for
discrete emotion recognition in an acted setting [4]. This work relies on some
of the preprocessing techniques developed and tested by Ghaleb et al., since it
is expected that they will also be beneficial for continuous emotion recognition.
Research in the field of emotion recognition is encouraged by the Audio Visual
Emotion Challenge (AVEC), which is a competition that is held yearly as part of
the ACM Multimedia conference. The competition features a continuous affect
recognition sub-part that sets a benchmark for work in the emotion recognition
field. The accompanying baseline uses support vector machines (SVM) for each
of the eight used modalities, with modality specific feature extraction and pro-
cessing. SVMs are subsequently fused with a linear regression model [10]. This
work will focus on solving the problem presented in this sub-part using feature
embeddings and deep neural networks, which have been shown to be effective
in similar works [10, 12, 3, 6]. Furthermore, Wu et al. showed that using only
feed-forward networks and attention can achieve results that are comparable to
recurrent approaches [11]. The method proposed in this work relies on the archi-
tectures used by Zhao et al.[12] and Haifeng et al.[3], in which they show that
using stacked LSTMs followed by a dense linear layer per modality provides good
results. Brady et al. showed state-of-the-art results on the RECOLA dataset for
AVEC 2016 using a Kalman Filter approach to fuse models trained for specific
modalities [2].

2 Methods

2.1 Attention

Attention mechanisms consitute a family of techniques that can be applied to
selectively focus on parts of a sequence. It was initially proposed by Luong et
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al. [8] for the purpose of machine translation using an encoder-decoder network.
Here the encoder network encodes the sentence in the source language and the
decoder uses this encoding to reproduce the sentence in the target language. The
order of the words in the source and target languages are often not aligned, and
thus the decoder needs to be able to process the encoding out of order. Atten-
tion mechanisms allow this network to selectively focus on relevant parts of the
encoding to produce a part of the target sequence. The attention mechanism,
specifically the general-dot-product (GDP) variant, calculates an attention vec-
tor at over each encoder hidden state hs, which determines how important each
part of the input is. This mechanism is formulated as follows:

at(s) =
exp(score(ht, hs)∑
s′ exp(score(ht, hs′)

(1)

score(ht, hs) = h>t Wahs (2)

Here h>t is the current state of the decoder and matrix Wa is a parameter that is
to be learned. The attention vector at can then be used to compute a weighted
average of the source hidden states [8]. Similar to translation, emotions and their
corresponding cues in the data may not be aligned. Thus the use of attention
mechanisms could improve the performance of models for emotion recognition
by allowing them to focus on the information that is relevant for recognizing
emotion.

2.2 Proposed approach

The proposed model follows the works of Zhao et al. and Haifeng et al. [12, 3].
These works successfully use LSTMs for multi-modal affect recognition using
features that are similar to the ones used in this work. The model used here is
a stacked LSTM with dropout between the layers combined with a dense linear
layer, where each model outputs both valence and arousal for each time step.
This architecture is called the deep long short-term memory network (DLSTM).
In total, the network consists of two LSTM layers followed by a dense linear
layer. The first LSTM layer iterates over the input sequence and produces a
hidden state for each time step in the input. These hidden states are the input
for the second LSTM layer, which in turn produces a new sequence of hidden
states. These final hidden states are the input to the linear layer that maps them
into the two emotion dimensions. This architecture is expanded with attention-
based layers on the embedding level (over time) and the fusion level (over the
DLSTM networks). Figure 1 shows the overall network structure.

Embedding attention Attention over the embeddings closely follows the gen-
eral dot-product (GDP) approach described by Luong et al. for language trans-
lation using encoder-decoder architectures [8]. The GDP attention mechanism
computes scores for each source hidden state hs in a sequence. A softmax func-
tion is applied to these to obtain a distribution which is subsequently used to
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construct a weighted combination of the sequence. GPD attention computes the
score in the following way: h>t Wahs. Where ht is the current state of the de-
coder and hs is a hidden state of the encoder. Wa is a weight matrix that maps
the encoder hidden state and the target hidden state to a score and has to be
optimized. To adapt this method for affect recognition, the target hidden state
ht is the hidden state of the DLSTM, Cv in figure 1, and the source states are
replaced with the embedding vectors in a certain window of size n, represented
by Vt−n

2
· · ·Vt+n

2
in figure 1. The attention mechanism thus computes the score

of an embedding vector depending on the current state of the DLSTM and the
contents of the embeddings.

This attention mechanism is applied only to the video modality. As will be
explained in section 3, the extracted audio features already contain temporal
information and should therefore benefit less from attention.

Fig. 1. Overview of the proposed model. at and vt respectively, are the audio and video
embeddings at time t. The variables ym and cm are the output and hidden state of the
DLSTM responsible for modality m, and z represents the fused output.

Bimodal attention fusion The attention concept is also applied to decision
fusion. The information that the DLSTMs receive may not allow for a very good
prediction of emotion at every time step. For example, at some time t, audio
may be more appropriate for emotion recognition, whereas the visual signal may
not be carrying significant information. In that case, the output of the audio
LSTM should have a higher weight in decision making. GDP attention mecha-
nism outputs a linear combination of the inputs, resulting in equal weight being
given to the valence and arousal output of a DLSTM. This is not necessarily the
best solution, as at some time step t the audio DLSTM might be very ”confi-
dent” about its output for arousal and unsure for valence, but the video DLSTM
may be confident about valence. The GDP attention mechanism cannot assign
different weights for each output dimension separately.
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We experimented with an attention approach to decision fusion: Bimodal At-
tention Fusion. This method uses attention to combine the outputs of modality-
specific DLSTM networks. Attention scores are computed by considering all DL-
STM hidden states at once. Here C ∈ Rcn, with c being the size of the hidden
states and n the number of DLSTMs, is a vector containing the concatenation of
the hidden states of all the underlying DLSTMs at time t. Ym ∈ Rn is a vector
containing the outputs of the DLSTMs for output modality m. This vector con-
tains either valence or arousal outputs of all the DLSTM networks. The scores
and outputs are computed separately for both arousal and valence, because dif-
ferent output dimensions may require different distribution of attention. The
calculation of the scores can be reformulated as follows:

Sm = C>Wm (3)

ami
=

exp(si)∑n
j=1 exp(sj)

(4)

Z = {z1, · · · , zo},where zm =

n∑

i=1

amiymi (5)

The attention vector A, whose elements are described in equation 4, is the matrix
product of the DLSTM hidden states in C and the learned weights in Wm

followed by an application of the softmax function. The weights Wm ∈ Rcn×n
map the hidden states to scores per DLSTM and are optimized separately per
output modality m. This allows for different mappings from hidden states to
scores for both valence and arousal. The attention weights in Am are used to
take a weighted combination of the DLSTM outputs.

Baseline fusion methods The effectiveness of the attention mechanism is as-
sessed by comparing it to networks that fuse without attention. The first network
realizes fusion as a static combination of the network outputs by a dense linear
layer and is named output linear baseline (OLB). When Y ∈ Ro×n is a matrix
containing the LSTM outputs, with o being the number of output dimensions,
and W ∈ Rn×1 is a weight matrix, the fused output can be formulated as follows:

Z = YW (6)

Matrix W is optimized during training and linearly fuses the outputs of the
DLSTMs. The second network fuses by using the concatenation of the hidden
states of the DLSTMs. This method, named hidden linear baseline (HLB), can
be formulated as:

Z = C>W (7)

Just as in equation 3, C ∈ Rcn is a matrix containing the concatenation of the
hidden states of the DLSTMs, but here Wm ∈ Rcn×o is a parameter that maps
the hidden states directly to the output emotions.
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Fig. 2. Example frames from the RECOLA dataset

3 Results and discussion

This section details the experiments performed to determine the performance of
the architecture described in section 2.2. A subset of the RECOLA dataset from
the University of Fribourg was used in the 2015 and 2016 Audio/Visual Emotion
Challenge (AVEC), and is used in this work to train the proposed architecture.
The dataset consists of 18 five minute clips in predetermined train and validation
partitions [10]. Examples of frames from this dataset are shown in figure 2. This
subset of RECOLA contains several feature types, but only the raw video and
audio data is used. Emotion is annotated continuously in the valence-arousal
space for each video frame. Face extraction is performed on each frame of video
and the raw data is transformed using embedding networks. Activations from
the last convolutional layer of the VGGFace network is used to extract frame-
level video features and VGGish is used to extract audio features from a 960ms
window [1, 5].

The models mentioned below are trained by optimizing the mean squared
error using the Adam optimizer with a learning rate of 0.01. The DLSTM archi-
tecture, described in section 2.2, is optimized using truncated backpropagation
through time, following Zhao et al. and Haifeng et al. [12, 3]. The training and
test partitions provided with the RECOLA data were used in order to make a
fair comparison with the results from the state of the art from AVEC. Model
performance is assessed with the Concordance Correlation Coefficient (CCC)
measure, which is a common measure of performance in emotion recognition.
The CCC is computed for each sequence in test partition of the dataset and
averaged over the sequences to show the performance.

3.1 Attention

As explained in section 2.2, attention mechanisms are applied on two points
in the proposed model. Embedding attention, which applies attention to the
embeddings used as input to the video DLSTM, and fusion attention, which uses
attention to fuse the outputs of the DLSTMs. These two methods are evaluated
separately in the following experiments.

Embedding attention To assess the effectiveness of applying attention to
the video embeddings, the performance of the DLSTM is compared with and
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without attention. For embedding attention, a window size of 13 frames is used,
allowing the mechanism to consider a segment of half a second. The baseline
in this comparison is a DLSTM without any attention, and thus processes the
embeddings sequentially, instead of being able to focus on a window.

Initial performance of the model with embedding attention was very poor
and stagnated directly after start of training. This was in contrast with the be-
havior of the model without embedding attention and suggested that training
was hindered by the addition of the attention mechanism. To counteract this,
the embedding attention layer is bypassed for the first five training epochs. After
this startup period, the embedding layer is included again, which significantly
improved performance. A possible explanation for this phenomenon is the cyclic
dependency between the embedding attention and the hidden layer of the DL-
STM. The embedding attention layer uses the hidden state to compute the input
to the DLSTM, which in turn affects the hidden state. A meaningless hidden
layer could result in poorly attended input, which then maintains the form of
the hidden state. To account for random initialization, training and testing is
repeated 10 times. For arousal, this resulted in very similar results regardless of
the use of attention, with CCCs of 0.15 (±0.05) and 0.14 (±0.05) for no atten-
tion and embedding attention respectively. A slight improvement was observed
for valence with CCC results of 0.36 (±0.07) without attention and 0.39 (±0.06)
with embedding attention. Even though promising, this difference is not statis-
tically significant, with p > 0.05. A bidirectional variant of the DLSTM without
attention, since the embedding attention allows the network to use frames ahead
of the current time step, and a bigger attention window were evaluated, but these
resulted in similar CCC scores.

Table 1. CCC results for the pre-trained uni-modal DLSTMs (left) and their fusion us-
ing bimodal attention fusion and baselines (right). Both Bimodal attention and Hidden
linear baseline (HLB) successfully fuse the unimodal networks for valence prediction.

Uni-modal Valence Arousal Fusion Valence Arousal
audio 0.42 0.60 Bimodal attention 0.48 (±0.04) 0.60 (±0.1)
video 0.24 0.10 OLB 0.32 (±0.03) 0.40 (±0.08)

HLB 0.48 (±0.01) 0.64 (±0.02)

Fusion attention Section 2.2 describes the attention mechanism that can be
used to combine the outputs of the uni-modal DLSTM networks. To make a fair
comparison with the detailed baselines, two DLSTM networks are pre-trained
separately on audio and video, and subsequently frozen before training the fusion
mechanisms. This procedure restricts the performance of the model as a whole,
but allows for a clear comparison of the fusion methods. The training of the fusion
mechanisms is repeated 10 times while using the same pre-trained DLSTMs, to
account for random initialization.
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The results can be seen in figure 3 and table 1. The CCC values for the pre-
trained network are also detailed in table 1. Comparing the methods shows that
the proposed attention fusion mechanism significantly improves performance
when compared to fusion by linearly combining the DLSTM outputs (OLB).
However, its performance is matched by the baseline method that regresses the
hidden states of the DLSTMs directly (HLB). For valence, the HLB baseline
and bimodal attention mechanism both showed better performance than the
unimodal networks they fused. This suggests that the performance of the audio
network is slightly increased by fusion with the video modality, but the difference
is not large enough for any concrete conclusions. In short, the proposed method
seems fuse the uni-modal networks successfully, however its performance does
not improve beyond the HLB baseline, which does not use attention.
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Fig. 3. CCC results for fusion of pre-trained uni-modal DLSTM models using bimodal
attention fusion and baseline methods.

3.2 Comparison with the state of the art

The previous sections have each evaluated parts of the proposed architecture. In
this section, a comparison with recent works from the literature is performed. For
this, the network is trained in an end-to-end fashion using the bimodal attention
fusion method and embedding attention on the video modalty. Hyperparameters
are optimized empirically, resulting in hidden sizes of 32 and 128 for the audio
and video DLSTMs respectively. Work by Haifeng et al. [3] shows that early fu-
sion of features combined with decision level fusion provides improved results for
emotion recognition. For this purpose, audio and video features are concatenated
per time step to form an early fusion modality. The model described in section
2.2 is extended with a third DLSTM, with a hidden size of 128, that is used on
this new modality. The outputs of this DLSTM are fused with the outputs from
the audio and video DLSTMs to produce the final model output. The results
are compared with a baseline provided by AVEC [10] and the best results on
this dataset, achieved by Brady et al. [2]. This comparison is displayed in ta-
ble 2. The CCC scores obtained by the proposed model for arousal are higher
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than the baseline, but are below the ones by Brady et al. However, it should
be highlighted here that these two works make use of a wider set of modalities
(such as electrodiograms and electrodermal activity, beyond just video and au-
dio), whereas, in the proposed method, only audio and video are considered. For
valence, the performance is just below the baseline. The results obtained with
the proposed model are comparable to the results of these methods, even though
fewer modalities were used and embedding techniques from other domains were
reused.

Table 2. Performance of the model proposed in section 2.2 compared to the AVEC
baseline and state of the art for this dataset.

Valence Arousal

Baseline 0.683 0.639
State of the art
(Brady et al.)

0.702 0.82

Proposed 0.62 0.72

4 Conclusions and future work

This work explored combining the information in audio and video data by using
attention to fuse the output of networks that were trained on only one modality
each. Furthermore, attention was used to spot important video embeddings in
temporal windows using the hidden state of an LSTM network.

Fusion of the output modalities using attention shows a significant improve-
ment when compared to a model that does not take the states of the input
networks into account. However, it shows similar performance to the baseline
that directly regresses the hidden states, suggesting that more improvements
should be possible. Usage of embedding attention showed promising results, but
this difference is not significant, with a p-value greater than 0.05. Applying at-
tention on the embedding level produced new challenges, that were overcome by
using a special training procedure. Future work could investigate the causes for
this and explore other, more flexible, variants of this mechanism.

Combining embedding attention and fusion attention yields a model that
shows promising performance. Results exhibited improved performance com-
pared to the AVEC baseline for arousal and close performance for valence. The
proximity to the baseline and state-of-the art results shows the potential of
the proposed method, since the baseline and state-of-the-art methods use more
modalities and fine-tuned pre-processing methods. This is in contrast to the pro-
posed method, which uses fewer modalities and reuses feature embeddings from
other domains. Other modalities can be easily included in the proposed method
and it is expected that this will improve results.

In conclusion, the use of attention mechanisms for emotion recognition shows
promising results and can successfully combine information from multiple modal-
ities. Future research could expand on this architecture by experimenting with
different forms of attention, extra modalities and different feature embeddings.
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Abstract. We designed freely scalable ensembles of spiking neurons to
carry out the operations required to run a genetic algorithm, thereby
opening up possibilities for making use of efficient neuromorphic hard-
ware. Two types of implementation are explored that offer a complexity
trade-off between computational space and time, with both designs hav-
ing linear energy complexity. The designs were implemented in a sim-
ulator to successfully solve the one-max optimization problem, serving
as a proof of concept for running genetic algorithms as spiking neural
networks.

Keywords: neuromorphic computing · genetic algorithm · spiking neu-
ral networks

1 Introduction

Neuromorphic computing ranges back to the term being coined in 1990 [1], in
which the first implementation consisted of very large scale integration (VLSI)
with analog components mimicking the biological neural systems. Much research
has been done since this time, and in the last few years the energy efficiency of
such architectures have become an increasingly dominant research subject. Spik-
ing neural networks (SNN) are known as a type of neuromorphic implementation
which have exceptional energy saving properties, compared to other systems [2].
SNNs augment artificial neural networks with the spiking dynamics found in
biological neurons [3]. Based on leaky integrate-and-fire (LIF) neurons [4], SNNs
transmit information by means of timing and energy spikes, released when the
potential difference inside a neuron reaches a certain threshold. This is because
such hardware is modeled after the brain in that its activation is event-driven
and asynchronous. On top of that, SNN’s property of local information storage
effectively avoids the von Neumann bottleneck arising from an idling processor
while retrieving data from memory [5]. Researching the possibility of implement-
ing various existing algorithms in such SNNs leads the way to a future in which
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real life applications of such algorithms currently implemented on von Neumann
architectures could be replaced.

Implementing algorithms as SNNs to run them on neuromorphic hardware
has been done for sorting [6], constraint satisfaction [7], shortest path and neigh-
borhood subgraph extraction problems [8]. The striking similarity between a ge-
netic sequence and a neural spike train inspires the implementation of a genetic
algorithm (GA) as a SNN, which could make use of recent hardware develop-
ments in neuromorphic computing.

The use of evolution-inspired algorithms has been proven a viable solution
for tackling problems of optimization, bringing in advantages for optimisation
over traditional methods. For instance, GA systems [9, 10] may provide the
opportunity for difficult problem solving such as multi-objective optimisation [11]
and have found applications in various practical settings (see [12] for a review).
As in natural evolution, GAs work by modifying the characteristics of individuals
in a population across several iterations. This is done by means of reproduction
(crossover) and random gene mutation. With each run, individuals with an
arrangement of genes with a higher fitness value are allowed to preferentially
reproduce and carry over their genetic information into the next generation. In
this study, each individual solution (chromosome) is represented as a binary bit
sequence, in which each bit represents the value of a gene.

Our main aim was to investigate the feasibility of implementing a GA using
spiking neurons with the potential for future implementation on neuromorphic
hardware, such as Intel’s Loihi [13] or IBM’s TrueNorth [14]. Our design con-
sists of binary genetic sequences, which are represented as neuronal spikes and
are processed by LIF neurons with context-dependent parameters. The chosen
optimization problem is the one-max problem due to its simplicity and wide use
in the literature on genetic algorithms; the objective of which is to produce a
fully active genetic sequence, in this case a fully active spike train. The neural
network was implemented and tested using a spiking neuron simulator3.

We considered two candidate possibilities for encoding the binary genetic
sequence in neural ensembles. Firstly, the genetic sequence can be represented
sequentially as a spike train, with a spike indicating a 1 and no spike indicating
a 0. An ensemble in this design processes one bit at a time. The second way of
representing a binary genetic sequence is parallel, using a separate neuron for
each position of the genetic sequence. These two encodings are expected to offer
a complexity trade-off between computational space and time.

In the following, the high-level architecture of the SNN is presented, followed
by details on the sequential and parallel implementations. We then conduct a
complexity analysis of both implementations with regard to space, time and
energy, in order to assess the tractability of our design.

3 https://gitlab.socsci.ru.nl/j.kwisthout/neuromorphic-genetic-algorithm

BNAIC/BeneLearn 2020 141



A Spiking Neuron Implementation of Genetic Algorithms for Optimization 3

2 High-Level Architecture

The genetic algorithm consists of initializing and evaluating a starting population
and then repeatedly performing selection, crossover, mutation, and evaluation on
the population until termination. It is implemented as a single recurrent SNN,
consisting of specialized neural ensembles for each operation (Figure 1). The
topology of the network gives a fitness hierarchy, with the fittest chromosomes
being at the top and conversely the least fit chromosomes being at the bottom.
The network architecture is static during run-time and no learning of the weights
is required.

Fig. 1: High-level architecture of the genetic algorithm network, depicted with 8
chromosome lanes as solid arrows (each arrow can represent multiple neural con-
nections in the parallel design). After mutation, all chromosomes are connected
back to evaluation to close the generation loop, resulting in a single large neural
network. The dashed arrows from evaluation to sort represent the evaluation
result. To increase the number of chromosomes, the pattern of the second pair
of the four lane pairs is repeated.

After initialization, the chromosomes enter the evaluation ensembles in pairs,
where they are evaluated against each other and then potentially swapped to
bring the chromosome with higher fitness to the top. This setup corresponds to
a single pairwise bubble sort step and over time ranks chromosomes by their
fitness, which is necessary for selection. The use of only a limited number of
bubble sort steps in each generation will lead to incomplete sorting, but is more
efficient and leads to some variety in the ranking of the chromosomes while still
avoiding the removal of very promising individuals from the bottom. This design
is related to the ranking selection mechanism [15].

Selection is implemented in the connections from the sorting ensembles to
the crossover ensembles, by eliminating the bottom chromosome and connecting
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the top chromosome twice. This results in better solutions propagating more
successfully over time. In addition to potentially moving up one lane in the sort-
ing ensemble itself, the winner of the pairwise evaluations moves up by another
lane after sorting to ensure upwards mobility, as otherwise the same pairs would
be compared each iteration. Conversely, the inferior chromosome moves down
by a number of lanes after sorting.

Crossover is then performed on each pair of chromosomes. This reproduction
is implemented with a stochastic crossover method, which splits two sequences
at a random point and swaps all subsequent genes between the individuals.

After crossover, each chromosome is processed individually in a mutation
ensemble. Mutation is carried out by assigning a probability for flipping the
activity of each bit in a given sequence. In our designs, we use a probability
of p = 1

n , where n is the length of the chromosome, but other mutation rates
are possible. We do not apply mutation on the top two chromosomes of each
generation in order to allow for stable one-max solutions. Again, this choice is
more up to the design of the genetic algorithm than the implementation as a
spiking neural network.

To close the generation loop, the outputs of the mutation ensembles connect
back into the evaluation ensembles, forming a recurrent neural network.

Scaling the network up for a larger population size or longer chromosomes
is straight-forward beyond a small minimum size, by repeating whole ensembles
and repeated elements within certain ensembles.

3 Neural Ensembles for Genetic Algorithms

3.1 Sequential Design

In our sequential design of the GA, the chromosome is processed one bit at a time,
which more closely resembles genetic processing in nature. Sequential processing
allows a small neural ensemble to process arbitrary lengths of chromosomes
over time without itself growing in size. The implementation relies on a lead bit,
which precedes every chromosome and is always active. This allows the signaling
of the arrival of a new chromosome, ensuring correct processing. In the following,
neurons will be ascribed different types based on their function in the ensemble.
However, they are all based on the LIF neuron model.

Evaluation Ensemble The sequential one-max evaluation ensemble (Figure
2) makes use of 8 neurons and 11 internal connections. It takes as input two
chromosomes and gives as output two chromosomes as well as a spike on a sepa-
rate neuron serving as an indicator in case the bottom chromosome has a higher
fitness than the top chromosome. The membrane potential of the accumulator
neuron (ACC) is increased with each active bit in the bottom chromosome, and
decreased with each active bit in the top chromosome. Note that the ACC neuron
is like all other neuron types used here just a LIF neuron with specific parame-
ters. The activation neuron (A), activated by the lead bit, then makes the ACC
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neuron fire or not based on the final membrane potential of the ACC neuron.
Only in the case of a membrane potential higher than zero will the indicator
neuron fire, and will the chromosomes’ ranking switch. A reset neuron (R) is
responsible for spiking but suppressing the ACC as to prevent interference of
previous chromosome comparisons with current iterations. Clearing the poten-
tial of the ACC neuron could alternatively be done using membrane leakage over
time, but that would result in a less predictable design.

Fig. 2: Sequential one-max evaluation ensemble. (I) Input, (acc) Accumulator
neuron, (a) Activation neuron, (r) Reset neuron, (o) Output.

Bubble Sort Ensemble The bubble sort ensemble (Figure 3) consists of 10
neurons and 15 internal connections. It takes two chromosomes plus a fitness in-
dication as input and gives two chromosomes as output. It uses gate (G) neurons
to open or close the identity and swap lanes connecting input and output and
thereby controlling whether the incoming chromosomes are swapped or propa-
gated as identity. This is achieved by giving the swap gate neurons a threshold
of two, which means they can only fire if an input comes from the gate control
(GC) neuron. The GC neuron is activated by the gate control activation (GCA)
neuron, which takes the fitness indicator input coming from the evaluation en-
semble. The GC neuron uses a recurrent connection to keep the swap gates open
and the identity gates closed until the chromosomes passed through entirely, at
which point it is deactivated by a delayed spike coming from the GCA neuron.

Crossover Ensemble The crossover ensemble (Figure 4) works similarly to
the bubble sort ensemble, except that identity and swap gates are not open or
closed for the whole chromosome, but switch activation at a random point. It
uses 13 neurons and 27 internal connections. The ensemble could be simplified
to only use one gate control (GC) neuron as in the bubble sort ensemble, but
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Fig. 3: Bubble sort ensemble in the sequential design. (I) input, (Gi) identity
gate, (Gs) swap gate, (GC) gate control, (GCA) gate control activation, (O)
output.

has been implemented with two in this project. The random crossover point is
implemented via a stochastic (S) neuron and a stochasticity control (SC) neuron.
The S neuron gets constant input from the SC neuron, while also generating a
random membrane potential each time step. If this combined potential crosses
the S neuron’s threshold the identity GC neuron is deactivated and the swap GC
neuron is activated. If S spikes, The S neuron also deactivates the SC neuron,
since only one crossover point is desired.

Mutation Ensemble Finally, the mutation ensemble (Figure 5) stochastically
turns a 0 into a 1 and conversely a 1 into a 0, independently for each bit excluding
the lead bit. It uses 6 neurons and 12 internal connections. The first stochastic
neuron (S1) gets a positive input from each spike in the input and adds a random
membrane potential, which can cross the threshold and lead to a spike. A spike
from S1 suppresses the ensemble output, thereby turning a 1 into a 0. The other
stochastic neuron (S2) always gets input from the control (C) neuron and adds a
random membrane potential, but it is suppressed by every spike in the input. If
no spike comes from the input, it has a chance of firing and turning the ensemble
output from a 0 to a 1. The control neuron is activated and finally deactivated
by the control activation (CA) neuron.

Full Network Behavior Each chromosome is passed through the ensembles
in its lane, as described in the high-level architecture (see Figure 1). In the
sequential design, a chromosome can still be processed in one ensemble while
already entering into the next (e.g. crossover to mutation), since here each bit can
be handled independently. An exception to this is the evaluation ensemble, which
needs to accumulate the full chromosome to make an evaluation. It therefore
breaks the time-constant flow through the other ensembles and leads to a time
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Fig. 4: Crossover ensemble in the sequential design. (I) input, (Gi) identity gate,
(Gs) swap gate, (GCi) identity gate control, (GCs) swap gate control, (GCA)
gate control activation, (S) stochastic, (SC) stochasticity control, (O) output.

Fig. 5: Mutation ensemble in the sequential design. (I) input, (S1) stochastically
flips 1 to 0, (S2) stochastically flips 0 to 1, (C) constant, (GCA) gate control
activation, (O) output.
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dependency on the chromosome length. On the upside this prevents chromosomes
from being longer than the execution cycle, which could otherwise lead to the
beginning of the next generation interfering with the end of the last for long
chromosomes.

3.2 Parallel Design

In the parallel implementation, every gene of the chromosome gets processed at
the same time. Instead of using a single spike train to represent the chromosome,
multiple neurons are used that each represent one gene of the chromosome. A
set of neurons can then represent the binary code of the chromosome by either
spiking or not. Its advantage is that the entire binary code of the chromosomes
can be conveyed in a single time step, but requires more neurons as chromo-
somes get longer. A generation of the entire algorithm in parallel design takes
exactly eleven simulation time steps. Again, all neuron types presented here are
simple LIF neurons with specific parameters. The different ensembles used in
the algorithm will be explained below.

Evaluation & Bubble Sort Ensemble In the parallel design the evaluation
step is combined with the bubble sort step. The goal of the evaluation is to have
the chromosome with the highest fitness be transferred to the first n output
neurons where n is the length of the chromosome. One lead bit is present for
each chromosome pair which enables functionality in the other ensembles of the
GA, however for this segment it is of no use and therefore linked directly to
its corresponding output neuron. Also for this reason the decision was made to
omit the lead bit altogether in Figure 6. By taking advantage of all information
contained in the chromosome being available at once, the evaluation and sorting
ensembles could be combined. This enables the comparison of the fitness through
the use of one Accumulator neuron (ACC) to which all input genes are connected
(excluding the lead bit). The sign of the connection weights leading to the ACC
results in it becoming active only if the lower chromosome has a greater fitness
than the top chromosome by at least one gene. Subsequently, the activation of
the ACC will determine whether either the identity gates or the swap gates are
activated. These are responsible for transferring the activity from the input to
the output neuron of the same, or the ’adversarial chromosome’, respectively.

Each of the input neurons are connected to both a dedicated identity gate and
a dedicated swap gate, with these being connected to the identity neuron or the
neuron on the other chromosome in the same position. The connection from the
input to the gates is delayed by one time step, however, to allow for synchronous
arrival of the spike and the spike coming from the ACC. The connections between
the ACC and the gates are weighted such that by default the identity gates have
a threshold low enough that a spike from the input neurons will be enough to
spike the gate as well while the threshold of the swap gates is too high. As soon
as the ACC is activated however this spike is no longer enough for the identity
gates, while the extra activation coming from the ACC to the swap gates lowers
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their threshold enough to let the spike pass from the input neuron to the correct
output neuron on the side of the ’adversarial chromosome’.

Fig. 6: Ensemble responsible for the evaluation and sorting in the parallel de-
sign, applied to a pair of chromosomes consisting of three genes each. Using an
accumulator neuron (ACC), the ensemble determines which of the chromosomes
has higher fitness and places the winner in the top lanes.

Crossover Ensemble The parallel crossover ensemble can be seen in Fig-
ure 7. The first gene of every chromosome always ends up in the same output
chromosome. The last gene is always crossed over and ends up in the opposite
chromosome. To decide where the genes in between go, a ’random point maker’
has been designed (see Figure 8), which is activated by the lead bit. The input to
the second layer of the random point maker spikes with a probability of p = 1

n−2 ,
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where n is the chromosome length. If activated, the node in this second layer
transfers this spike to all nodes in the third layer on the same level or below,
ensuring that once a gate opens the gates below also open.

Fig. 7: The parallel crossover ensemble. The first gene of a chromosome is always
sent to the same position and the last gene is always crossed over. For the genes
in the middle, the random point maker determines whether they are crossed over
or not.

The third layer of the random point maker (the gates) connect to the identity
and crossover nodes in the crossover ensemble. When a gate neuron of the ran-
dom point maker gets a spike, it closes the identity gate and opens the crossover
gate of both chromosomes at that level. This way, initially the crossover ensem-
ble will transfer genes to the same output chromosome, but at a random point
will switch to crossing genes over to the other output chromosome. The crossover
ensemble, together with the random point maker, takes five time steps to run for
any chromosome length n. The number of neurons in the ensemble is 10n− 11,
meaning linear growth. The number of connections does not show linear growth,
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because the connections between the second and third layer of the random point

maker grow with n2+n
2 , which is quadratic growth. Because of this, the number

of connections in the whole ensemble grows quadratically.

Fig. 8: The random point maker that connects to the gates of the crossover
ensemble. This ensemble determines the point of the chromosomes where the
identity ends and the swapping of genes with each other starts. It makes sure
that there is an equal probability for every point in the chromosome to be the
start of crossing over the remaining genes.

Mutation Ensemble The final ensemble in the parallel design is responsible
for the stochastic mutation of the genes in the chromosomes, meaning turning a
1 into a 0 or vice versa (Figure 9). The way it is implemented is through assigning
a probability P to each of the genes, and therefore neurons, to switch their activ-
ity. Except for the lead bit (Ia), every input-neuron (Ib, Ic) is connected to two
neurons, and both of their thresholds are influenced by the switching-probability
through T = 2 − P . A noise factor is present in both intermediate neurons, its
function being to add randomness as to whether a neuron will mutate or not.
In the diagram the first of the two intermediate neurons is responsible for po-
tentially turning off the activation in case that the input neuron has spiked, and
the other is responsible for the opposite. Each of the input neurons is connected
directly to its corresponding output neuron, however this connection is delayed
such that its spike is delivered synchronously to the potential spike of one of
the two intermediate neurons. The role of the lead bit is essential to the mu-
tation ensemble, as its guaranteed activity allows for the potential activation
of the two intermediate neurons, which otherwise have no chance of reaching
their threshold. Combining the stochastic nature of the intermediate neurons,
together with the configuration of the intermediate neurons then has the desired
effect of a random mutation of the gene together with the appropriate switching
of its value.
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Fig. 9: The parallel mutation ensemble. This ensemble makes sure that every
gene’s bit has a chance to be swapped.

4 Analysis

A raster plot of the output neurons of the sequential bubble sort ensemble is
given in Figure 10. It shows the improving solution quality over time, with
the top chromosome reaching one-max, and also shows some resemblance of
the fitness hierarchy, with better solutions being closer to the top (subject to
imperfect sorting). Figure 11 confirms that the top chromosome in the hierarchy
has a higher than average fitness, which specifically shows that even the single
pairwise bubble sort step at each generation is enough to at least approximate
a fitness ranking.

To assess the tractability of our two designs, a complexity analysis is per-
formed. Computational complexity for neuromorphic computing is considered
in terms of space, time, and energy, measured as the number of spikes. For this
analysis, all three complexities have been considered with regard to the num-
ber of chromosomes and the chromosome length. Comparing the complexity of
the sequential and parallel design shows a space-time trade-off between the two
(Table 1), with the sequential design requiring less space but more time. Both
designs have linear space complexity in the number of chromosomes, both in
terms of the number of neurons and the number of connections. The sequential
design has much lower space requirements however.

Regarding the chromosome length, the sequential design has constant space
complexity, while the parallel design is linear in the number of neurons and
quadratic in the number of connections. This is the least favorable of all measured
behaviors. It is specifically caused by the current implementation of randomly
determining a crossover point. Both designs have constant time complexity in the
number of chromosomes, with time measured in simulation steps per generation.

While the parallel design also has constant time complexity in the chromo-
some length, the sequential design has linear time complexity. The sequential
design inherently needs to have at least linear time complexity in the chromo-
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Fig. 10: Raster plot of bubble sort output neurons over time in the sequential
design (8 chromosomes of length 8, for 500 steps). Each row of pixels depicts a
neural spike train over 500 simulation steps. The solution quality is improving
over time, with the top chromosome reaching one-max.

Fig. 11: Average and best solution quality over generations (8 chromosomes of
length 8, for 500 steps). The fitness hierarchy results in the top chromosome
having better fitness than the average. While this plot comes from the sequential
design, the parallel design behaves similarly.
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Table 1: Complexity analysis of space, time, and energy (number of spikes) for
both the sequential and the parallel design. There is a trade-off between space
and time comparing the two designs, with the sequential design requiring less
space but more time.

n chromosomes len chromosomes

sequential parallel sequential parallel

space
neurons O(n) O(n) O(1) O(n)
connections O(n) O(n) O(1) O(n2)

time O(1) O(1) O(n) O(1)
energy O(n) O(n) O(n) O(n)

some length, as the full chromosome needs to be accessed before an evaluation
can be made. This is an advantage for the parallel design, as the full chromosome
is available at once. Both designs have linear energy complexity in the number
of chromosomes and in the chromosome length, when measuring energy as the
average number of spikes required to process one generation.

5 Discussion

A fully functioning genetic algorithm has been successfully implemented as a
spiking neural network with two different designs, representing chromosomes
sequentially as a spike train over time or as parallel spikes at a single time step.
Both implementations are freely scalable beyond a small minimum number of
chromosomes, with arbitrary chromosome lengths. The complexity analysis of
space, time and energy shows the tractability of this approach with the exception
of the quadratically growing number of connections required for the parallel
design when increasing chromosome length. The sequential design is at most
linear in any of the analyzed complexities.

The design has not yet been implemented on neuromorphic hardware. Since
fairly standard leaky integrate-and-fire neurons were used, however, and no learn-
ing is required, translating the design to an implementation in neuromorphic
hardware should be relatively straight-forward.

For future work, the design of the crossover ensembles could be adapted to
support gene lengths of more than one bit (a chromosome consists of a number
of genes, which itself could consist of a number of bases/bits). Practically this
just means that the random crossover point should only be allowed at transition
points between genes, so at fixed intervals. This would allow for more complex
behavior of the genetic algorithm.

More work needs to be done on the evaluation strategy, which under the cur-
rent design requires a unique neural ensemble purpose-built for the optimization
task at hand and thereby presents a hurdle for practical application. One possi-
bility for a more general approach would be to train a spiking neural network to
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perform approximate evaluations for the given task, instead of hand-engineering
the neural ensemble for exact solutions as is performed in this paper.
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Abstract. This paper studies multi-agent systems that involve networks
of self-interested agents. We propose a Markov Decision Process-derived
framework, called RepNet-MDP, tailored to domains in which agent rep-
utation is a key driver of the interactions between agents. The funda-
mentals are based on the principles of RepNet-POMDP, a framework
developed by Rens et al. [11] in 2018, but addresses its mathematical
inconsistencies and alleviates its intractability by only considering fully
observable environments. We furthermore use an online learning algo-
rithm for finding approximate solutions to RepNet-MDPs. In a series of
experiments, RepNet agents are shown to be able to adapt their own
behavior to the past behavior and reliability of the remaining agents of
the network. Finally, our work identifies a limitation of the framework
in its current formulation that prevents its agents from learning in cir-
cumstances in which they are not a primary actor.

Keywords: Uncertainty · Planning · Reputation · MDP · POMDP.

1 Introduction

Decision-making and learning in multi-agent settings is a multi-faceted area of
research [4, 2, 3, 14, 7, 6, 1]. Frameworks used for fully cooperative networks of
agents differ vastly from those used for networks of self-interested agents. A
primary concern when dealing with self-centered agents is that it makes multi-
agent learning inherently more complex than single-agent learning [6, 1]. In fact,
each agent needs to take into account the behavior of the entire network of
agents when learning its own behavior. Additionally, agent behavior tends to be
ever-changing. This non-stationarity of agent behavior leads to the loss of policy
convergence properties that can often be found in single-agent formalisms [1].

In 2018, Rens et al. [11] proposed a mathematical framework, called RepNet-
POMDP, designed to handle partially observable environments in which an
agent’s reputation among other agents dictates its behavior. The framework was
subject to several mathematical inconsistencies, had no working implementation,
and had a highly intractable planning algorithm.
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Nonetheless, the framework does present some ideas we believe are worth
pursuing. Hence, in this paper, we provide an updated version of the frame-
work, called RepNet-MDP. We address the mathematical inconsistencies of the
original framework and alleviate its intractability by only considering fully ob-
servable environments. We furthermore make use of an online learning algorithm
for finding approximate solutions to RepNet-MDPs. The viability of the frame-
work is tested in a series of experiments designed to highlight its strengths and
shortcomings.

Section 2 summarizes the relevant background required. Section 3 gives an
overview of the work related to our framework. Section 4 provides an intuitive
introduction to RepNet-MDPs. Section 5 covers the formal definition of the
framework. Section 6 covers planning for RepNet-MDPs. The experimental setup
and results are given in Section 7.

2 Background - Markov Decision Processes

A Markov Decision Process (MDP) describes a process for modeling decision-
making in stochastic environments [13]. An agent is assumed to move about
in an environment, described by a set of states S, by applying actions in A
to the environment. The transition rules of the environment are dictated by the
transition model T : S×A×S → [0, 1], that is, T (s, a, s′) returns the probability
of the agent transitioning to state s′ upon performing action a in state s. Each
action applied to the environment results in a reward for the agent, dictated by
the reward function R : S ×A → R, that is, R(s, a) returns the reward received
by the agent when performing action a in state s.

The objective of an MDP agent is to maximize its long-term cumulative
reward, called utility. The utility U of a finite state-action sequence, sometimes
called episode, E =

〈
s0, a0, s1, a1, ..., sT , aT

〉
is defined as [10]:

U(E) =
T∑

t=0

γtR(st, at),

where γ ∈ [0, 1] is called the discount factor. An agent advances in the environ-
ment by following a policy π : S × N → A that maps each environment state
and remaining time-steps to the action the agent should take.

The expected utility, or value, of being in any state st at time-step t, while
following policy π, with d time-steps remaining, is defined as:

V π(st, d) = E[U(Et) | st, π] = E
[ t+d∑

k=t

γk−tR(sk, ak)
∣∣ st, π

]
,

where Et is the sub-sequence of E starting at time-step t. An optimal policy π?

is a policy such that

∀s ∈ S,∀d ∈ N,∀π : V ?(s, d) ≥ V π(s, d),
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where V ? : S × N → R is the value function associated with optimal policy
π?. This policy satisfies the optimality equations, also known as the Bellman
equations (∀s ∈ S):





V ?(s, d) := max
a∈A

{
R(s, a) + γ

∑

s′∈S
T (s, a, s′)V ?(s′, d− 1)

}
d > 1

V ?(s, 1) := max
a∈A

{
R(s, a)

}

Partially Observable Markov Decision Processes are a common extension of
classic MDPs that deal with the problem of partial observability of the envi-
ronment [13]. To address the agent’s inability to observe the exact state of the
environment, the observation function O : A × S × Ω → [0, 1], where Ω is the
set of observations, is introduced. O(a, s′, o) returns the probability of the agent
making observation o after performing action a and the environment transition-
ing to state s′.

Instead of working with the actual states of the environment, the POMDP
agents make use of the notion of belief state b ∈ ∆(S) 3, which is a probability
distribution over the possible states of the environment. Belief states are updated
using the state estimation function SE defined as follows:

b′ := SE(b, a, o) :=
{

(s′, p)
∣∣∣ s′ ∈ S ∧ p =

O(a, s′, o)
∑
s T (s, a, s′)b(s)

P (o|b, a)

}
,

where P (o|b, a) =
∑
s′∈S O(a, s′, o)

∑
s∈S T (s, a, s′)b(s) is a normalizing con-

stant. We refer to [13] for an extensive overview of POMDPs.

3 Related MDP-based frameworks

Early multi-agent frameworks, such as Multi-agent Markov Decision Processes
(MMDPs) [4] and Decentralized Partially Observable MDPs (Dec-POMDPs) [2,
3], operate under the assumption that the agents are selfless and have a common
goal. Consequently, planning can be centralized, that is, each agent’s policy
can be computed by central unit, before being distributed amid the agents for
execution [14]. Dec-POMDPs furthermore differ from MMDPs in that states are
no longer fully observable, meaning that each agent is in possession of its own
set of local observations.

In 2005, Gmytrasiewicz et al. formalized an extension of POMDPs to multi-
agent settings, called Interactive-POMDP (I-POMDP) [7]. I-POMDPs are de-
signed for reasoning in networks of selfish agents. I-POMDP agents update their
beliefs not only over physical states of the environment but also over models of
the other agents in the network. The difficulty of solving I-POMDPs lies in the
recursive nature of the models. Consider agent g’s belief update in a network
inhabited by another agent, say h. A model of agent h may consist of the be-
lief function of said agent h over physical states and models of all other agents.

3 ∆(E) is the set of probability distributions over the elements of set E .
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These models may, in turn, consist of belief functions of their own. This nesting
of beliefs could theoretically be infinite, but is overcome by bounding the nesting
depth by a finite number n, and solving the problem as a set of POMDPs.

The RepNet-MDP framework [11] simplifies the notion of model by focusing
in on key concepts such as behavioral habits and reputation of other agents.
While this reduces the insights RepNet agents can have into other agents’ be-
havior, it makes the framework arguably more intuitive. The key, novel notion in
the RepNet framework is that of subjective transitions, which have a dependence
on the reputation of the agent performing the action.

4 Developing an intuition for RepNet-MDPs

To develop an intuition for the RepNet-MDP framework, parallels between the
concepts found in classic POMDPs and RepNet-MDPs can be drawn. In a
POMDP, a single agent, placed in a partially observable environment, applies
an action a? it deems optimal as per its current policy π?, and is sent back an
observation o. The state estimation function SE can be thought of as a way of
extracting information from said observation o, and storing it in a belief state
b′. More specifically, o contains information about the actual state of the envi-
ronment. The POMDP loop is depicted in Fig. 1a.

Environment

SE π?
b′ a?

o

(a) The POMDP loop

Environment

ADE π?
AD′ a?

s′

IE Img′

(b) The RepNet-MDP loop

Fig. 1: POMDP and RepNet-MDP loops.

Let us now consider a fully observable environment made up of 3 selfish
agents, of which the behavior of the first is dictated by the RepNet-MDP frame-
work. The willingness of the RepNet agent to engage with agents 2 or 3 is to
be conditioned by their reputation and behavioral habits. The first agent once
again applies action a?, as per its policy π?. The environment returns its new
state s′. In an effort to make well-informed decisions, the RepNet agent should
extract the other agents’ behavior from s′.

Two functions, analogous to the state estimation function SE in POMDPs,
are used to this end: The action distribution estimation function ADE extracts
information regarding other agents’ behavioral habits. The image estimation
function IE informs the RepNet agent on the image all the agents have of each
other. The RepNet-MDP loop is shown in Fig. 1b.

Closely tied to the concept of image is the notion of reputation. Specifically,
the reputation of any agent in the framework can be seen as a summary of the
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information encapsulated by the image. Unlike POMDPs, RepNet-MDPs feature
two types of actions, and by extention two types of transition models:

– Objective actions, which, when performed, have a real effect on the envi-
ronment. These actions can be seen as equivalent to actions as they exist
in MDPs. The associated transition model is called the objective transition
model OT and describes the rules of the environment as they apply to the
RepNet agent.

– Subjective actions, which, unlike objective actions, are never actually ap-
plied to the environment. Instead, they are associated with another transi-
tion model called the subjective transition model ST : This transition model
describes a RepNet agent’s subjective perception of the rules of the environ-
ment. This perception is a function of said agent’s reputation, and can be
used by the agent to aid in its decision-making.

5 Formal definition of RepNet-MDPs

In this section, we will formalize the RepNet-MDP framework4 introduced in
Section 4. A RepNet-MDP M is defined as a pair of tuples M :=

〈
Σ,Γ

〉
,

where Σ is called the System tuple and incorporates aspects of the network that
apply to all agents, and Γ is called the Agents tuple and contains each agent’s
subjective understanding of the environment it operates in.

Specifically, a System in a RepNet-MDP Σ is formally defined as a tuple

Σ :=
〈
G,S,A, I,U , OT

〉
,

where:

– G is the set of agents that can interact with the environment.
– S is the set of possible states of the environment.
– A is the set of possible actions, both objective and subjective. Formally,
A := Ao ∪ As, Ao ∩ As := ∅. The concept of subjective actions will be
discussed in Section 5.2.

– I : G×G×S×A → [−1, 1] is called the impact function. I(g, h, s, a) returns
the impact on agent g that is due to agent h performing action a in state s.
This function can be thought of as analogous to a Markov Decision Process’s
immediate reward function R.

– U : [−1, 1] × [−1, 1] → [−1, 1] is called the image update function. Given a
current value v, of the image an agent has of another agent, to be updated,
and a new expected total impact i, of which the definition will be given
shortly, U(v, i) returns an updated value of the image v′. Many instantiations
of this function are possible, two of which are presented in [11]. We will use
the following instantiation:

U(v, i) :=

{
v + (1− v)i if i ≥ 0

v + (1 + v)i if i < 0
4 The implementation of the RepNet-MDP framework can be found at

https://github.com/davidmaoujoud/RepNet-MDP
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– OT : G × S × Ao × S → [0, 1] is called the objective transition model.
OT (h, s, a, s′) returns the probability of the environment transitioning from
state s to state s′ when objective action a is taken by agent h.

In addition to the global information stored in Σ, each RepNet agent’s sub-
jective knowledge is stored in the Agents tuple Γ , formally defined as 5

Γ :=
〈
{STg}, {ADg}, {Imgg}

〉
,

where:

– STg : G × S × As × S × [−1, 1] → [0, 1] is called the subjective transition
model of agent g. STg(h, s, a, rh, s

′) returns the probability, as perceived by
agent g, of the environment transitioning from state s to state s′ if agent h
were to perform subjective action a, and has a reputation rh according to
agent g.

– ADg : G × S → ∆(A) is called the action distribution according to agent g.
ADg(h, s) returns a probability distribution over actions in A for agent h in
state s, according to agent g.

– Imgg : G × G → [−1, 1] is called the image function according to agent g.
Imgg(h, i) returns the image agent i has of agent h according to agent g.
Said differently, it returns what g thinks i thinks of h.

As introduced in Section 4, every agent bases its decision-making on the im-
age it believes all agents to have of each other, as well as each agent’s behavioral
habits. Let g be an agent, whose image at time t is Imgg, and action distribution
is ADg. At time t + 1, these constructs are updated via the image estimation
function IE and action distribution estimation function ADE respectively, to
produce Img′g and AD′g.

5.1 Image and Reputation

This subsection builds towards the formal definition of the image estimation
function IE. To this end, we introduce the notion of expected total impact. Con-
sider two agents h and i. In any given state, agent h can perform one of several
actions which may or may not have an impact on agent i. Likewise, agent i can be
expected to have an impact on agent h when performing an action. The expected
total impact should be thought of as a way of assigning a numerical value to the
bidirectional impact these two agents can be expected to have on each other.
Additionally, one direction of the impact may be perceived as more important
than the other and thus be weighed differently. According to an observing agent,
say g, the total impact h is expected to have on, as well as perceive from, i when
the environment is in state s, is defined as

ETIg(h, i, s, ADg) :=
∑

a∈A

[
δADg(i, s)(a)I(h, i, s, a)

+(1− δ)ADg(h, s)(a)I(i, h, s, a)
]
,

5 {Xg} is used as the shorthand notation for {Xg | g ∈ G}
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where δ ∈ [0, 1] weighs the importance of impact due to agent h and impact
perceived by h.

Agent g’s image of other agents, as well as the image it believes all agents
to have of each other changes as it observes the agents’ behavior. Let Imgg
be the current image function of agent g. Concretely, we wish to update the
image any agent i has of any other agent h, according to the observing agent
g (= Imgg(h, i)) on the basis of the impact h is expected to have on i (=
ETIg(h, i, s, ADg)). The updated image function Img′g is computed as follows:

Img′g := IE(g, Imgg, α, s, ADg)

:=
{

(h, i, t)
∣∣∣ h, i ∈ G ∧ t = U(Imgg(h, i), ETIg(h, i, s, ADg))

}
,

where s is the current state of the environment, IE is called the image estimation
function, and U is the image update function.

Finally, the notion of reputation as it is understood in this framework can be
thought of as a way of summarizing the information encapsulated by the image.

Say agent g wishes to estimate the reputation of agent h in a network made
up of several other agents. It can, to this end, use the image each agent i has of
agent h (= Imgg(h, i)) as a guiding principle. A first idea might be to take agent
h’s reputation to be equal to its average image in the network. If, however, some
agent i has a poor image of agent h (Imgg(h, i) < 0), but agent g has a poor
image of agent i (Imgg(i, g) < 0), it may be unreasonable for agent g to assume
that agent i’s opinion of agent h is indicative of agent h’s reputation being poor.
These concerns are addressed by weighing the image each agent i has of h by the
image g has of i. As such, if both images are negative, the resulting reputation
of h will not be affected negatively (Imgg(h, i)× Imgg(i, g) > 0). Formally, the
reputation of an agent h, according to agent g, is defined as

REPg(h, Imgg) :=
1

|G′|
∑

i∈G′

Imgg(h, i)× Imgg(i, g),

where Imgg(i, i) = 1 ∀i ∈ G, and G′ = G if h 6= g and G′ = G \ {g} if h = g.
Recall that in the RepNet framework, reputation influences subjective transition
probabilities, which, in turn, influence a RepNet agent’s planning.

5.2 Subjective actions and the subjective transition model

In this section, we describe the use of subjective actions and subjective tran-
sition models in the RepNet framework. As introduced in Section 4, we make
a distinction between the purpose of an objective transition model, which de-
scribes the actual rules of the environment as they apply to the RepNet agent,
and that of a subjective transition model, which describes that agent’s subjective
perception of the rules of the environment, this perception being influenced by
the reputation of the RepNet agent. To illustrate this further, we will make use
of a simple trading example between two agents A and B. Agent A wishes to
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trade with agent B, who can either accept or refuse the trade offer. The envi-
ronment is made up of the set of states S = {s0, s1, sa, sr}. s0 is the initial state,
prior to any trade, s1 is the state in which agent B is made aware of agent A’s
trade offer, sa is the accept state, and sr is the refuse state. The set of objective
actions at the disposal of both agents is given by

Ao = {trade with A, trade with B, accept, refuse, wait}.

The transition model of the environment assumed to be deterministic, is given in
Fig. 2. In the eyes of agent A, agent B’s response to a trade offer, characterized

s0 s1

sa

sr

trade with B, wait

wait, accept

wait, refuse

1

1

1

Fig. 2: Transition model of the environment (trading example). Each transition has
two objective actions, the first action represents agent A’s objective action, the second
action represents agent B’s objective action.

by transitions s1 → sa and s1 → sr, depends on A’s reputation. The action
taken by agent A during these transitions is wait. To make use of the notion of
subjective actions, the set of subjective actions As will contain the counterpart6

of wait in its subjective form, that is, As = {wait s}.
The way agent A makes use of actions in Ao and As can now be detailed.

When planning to maximize its expected impact, agent A will make use of the
objective transition model whenever the action currently investigated has no
subjective counterpart in As. For instance, the transition probability when in-
vestigating action trade with B is given by OT (A, s0, trade with B, s1). When
an action in Ao has a counterpart in As, agent A will make use of the subjective
transition model. For instance, the transition probability when investigating ac-
tion wait/wait s is given by STA(A, s1, wait s, sa, rA). As such, the reputation
of agent A is accounted for when agent A plans to maximize its expected impact.

5.3 Action distribution

The next step in the formalization of RepNet-MDPs consists in redefining the
updating scheme of the action distribution ADg of each agent g. Say an environ-
ment hosting two agents g and h is currently in state s. Agent g has an a priori
notion of the probability of agent h picking an action a in state s, Pg(a|h, s, rh).
Following agent h performing action a in this state, the environment transitions

6 We define counterpart as a partial mapping C : Ao → As. If C(a) is not defined, then
a has no counterpart in As.
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from state s to state s′. The a posteriori probability of agent h performing that
same action a in state s in the future is now computed using Bayes’ rule:

Pg(a|h, s, rh, s′) =
Pg(s

′|h, s, rh, a)Pg(a|h, s)∑
a′ Pg(s

′|h, s, rh, a′)Pg(a′|h, s)
.

One can add a smoothing technique called Laplace smoothing to the present
result in an effort to avoid undesirable side effects related to the use of deter-
ministic transition models. The definition for the action distribution estimation,
obtained after replacing the probabilities by the terms defined previously and
applying the smoothing technique, is then given by:

AD′g := ADE(g, s′, ADg, Imgg)

:=

{
(h, s, a, p)

∣∣∣∣∣ h ∈ G ∧ s ∈ S ∧ a ∈ A ∧ rh = REPg(h, Imgg)

∧ p =
Tg(h, s, a, s

′, rh)ADg(h, s)(a) + η∑
a′(Tg(h, s, a

′, s′, rh)ADg(h, s)(a′) + η)

}
,

where ADE is called the action distribution estimation function, s′ is the state
the environment transitions to, and η is the Laplace smoothing parameter. We
refer to the accompanying extensive version of this paper [9] for more details.

Note that to simplify the notation, we combined the objective and subjective
transition models into a single model Tg, called the global transition model and
formally defined as

Tg(h, s, ah, s
′, rh) :=

{
STg(h, s, ah, s

′, rh) if ah ∈ As
OT (h, s, ah, s

′) if ah ∈ Ao
(1)

6 Planning in the RepNet framework

We now describe optimal behavior in the context of RepNet-MDPs, for finite
horizon look-ahead. To simplify the notation, we can define a construct called
epistemic state. The epistemic state θg of agent g is formally defined as a tuple
θg :=

〈
s,ADg, Imgg

〉
, where s is the current state of the environment, ADg

is the current action distribution of agent g, and Imgg is the current image
function of agent g. θg ∈ Θg, and Θg is called the epistemic state space. This
set contains every possible combination of physical states of the environment,
action distributions, and image functions of agent g.

An agent should perform actions according to the perceived immediate im-
pact they have on the agent itself. The perceived immediate impact on agent g
resulting from performing action a in state s is defined as

PIg(s,ADg, a) :=
1

|G|
[
I(g, g, s, a) +

∑

h∈G\{g}

∑

a′∈A
I(g, h, s, a′)ADg(h, s)(a

′)
]
,
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where ADg is the current action distribution of agent g. The first term describes
the immediate self-impact as a consequence of agent g performing action a, while
the second term describes the expected immediate impact that the network (i.e.,
the remaining agents) has on agent g.

Analogously to regular MDPs, a RepNet-MDP agent g strives to maximize its
expected discounted perceived impact E

[∑k
t=0 γ

tPIg,t
]
, where γ is the discount

factor and PIg,t is agent g’s perceived immediate impact at time-step t. This is
accomplished by computing the optimal value function Vg : Θg × N → R (in a
finite-horizon setting). It satisfies the optimality equations, which are defined as
(∀θg ∈ Θg)




Vg(θg, k) := max
a∈A

{
PIg(s,ADg, a) + γ

∑

s′∈S
Tg(g, s, a, s

′, rg)Vg(θ
′
g, k − 1)

}

Vg(θg, 1) := max
a∈A

{
PIg(s,ADg, a)

} (2)

where rg = REPg(g, Imgg), θg =
〈
s,ADg, Imgg

〉
, and

θ′g =
〈
s′, ADE(g, s′, ADg, Imgg), IE(g, Imgg, α, s, ADg)

〉
.

In this work, we implement (approximate) online planning [12] instead of
exact planning. The general principle of model-based online planning can be
described as the interleaving of two phases, the planning phase, in which the
(PO)MDP performs a look-ahead search of a given depth D, starting at the cur-
rent environment state, the goal being to determine the most suitable action, and
the execution phase, in which this action is applied to the environment [12]. In
this paper, we make use of an implementation of this approximate technique for
the RepNet-MDP framework. We refer to [9] for details on the implementation.

7 Experiments

The goal of the experiments is to showcase the strengths and shortcomings of the
framework. To this end, the experimental setup consists of 2 trading scenarios,
for which several experiments are conducted. All experiments were conducted
with look-ahead depth D = 3, Laplace smoothing parameter η = 0.1, and discount
factor γ = 0.7. Note that these experiments serve as a proof of concept for the
RepNet framework and, as such, are not designed to reflect the framework’s
applicability to problems of realistic scale.

7.1 Experiment 1: Trading between two agents

Let A and B be two agents. Agent A plays the role of the buyer, agent B the role
of the seller. Agent A can engage in a trade with agent B, and B can accept or
refuse the trade offer. Furthermore, agent A can, prior to making a trade offer,
do a good deed in an effort to improve its image in the eyes of agent B.

In this series of experiments, Agent A is managed by the RepNet algorithm.
Agent B is run by a simple algorithm that accepts or rejects trade offers made by
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agent A according to a set schedule. In particular, agent B is asked to reject trade
offers for the 20 first time-steps, accept them for the 60 subsequent time-steps,
and finally reject them for the last 20 time-steps.

Two series of experiments are conducted, the first one without making use
of subjective actions, the second one by modeling the action of agent A awaiting
agent B’s response to a trade offer as a subjective action, meaning the outcome
of agent A’s planning will be influenced by its reputation. A well-designed sub-
jective transition model, schematized in Fig. 3, that realistically reflects how the
reputation of agent A may influence the willingness of agent B to accept A’s
trade offers is put to the test. The variables tracked are the action distribution,
image, and by extension the reputation of both agents in the eyes of agent A,
and frequency at which agent A makes trade offers.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

Reputation of agent A

P
ro

b
a
b

il
it

y

Perceived probability of B accepting

Perceived probability of B refusing

Objective probability of B accepting
and refusing

Fig. 3: Perceived probability of agent B accepting and refusing the trade offers, as a
function of the self-reputation of agent A.

Fig. 4 shows the evolution of agent A’s action distribution for target agent
B. Fig. 5 shows the evolution of agent A’s self-reputation during the experiment
involving the subjective transition model. Note that A’s self-reputation, and
more generally A’s image function, have no bearing on its decision-making if no
subjective actions are used (see Equations 1 and 2, Tg makes use of the notion
of reputation only for subjective actions). Finally, Fig. 6 shows the evolution of
the frequency at which A makes trade offers.

In the first 20 time-steps, B refuses each trade offer. Regardless of the series
of experiments, agent A is able to pick up on this via the action distribution. As
a consequence, it quickly reduces the frequency at which it attempts to trade
with B. In the 60 following time-steps, B is asked to change its behavior and
accept each trade offer. Hesitant at first, A gradually increases the frequency at
which it attempts to trade with B. Agent A is able to pick up on B reverting
back to its old behavior during the final 20 steps.

Additionally making use of a well-designed subjective transition model no-
ticeably improves the RepNet agent’s performance. While the trajectories show-
case the same key elements, the pace at which agent A is able to adapt improves
greatly. The subjective transition model was designed such that agent A be-
lieves that its reputation must be good for B to be willing to trade with A (Fig.
3). As such, during the first 20 time-steps, A’s relatively poor-in-comparison
self-reputation has an immediate negative effect on the value it associates with
the trade with B action during the look-ahead search. It quickly becomes more
valuable to stop trading with B. Similarly, A’s reputation needs to be high for
it to start trading with B again, explaining the slow increase of the frequency of
trade offers at the start of the second phase.
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Fig. 4: Probability of B accepting A’s trade offers, according to A
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Fig. 5: Reputation of agent A, according to itself.

7.2 Experiment 2: Trading between three agents

Let A, B, and C be three agents. Each agent simultaneously plays the role of
buyer and seller, and can thus engage in a trade with any other agent. Each
agent can accept or refuse any trade offer made by any remaining agent.

The present scenario is used to verify the ability of a RepNet agent, say agent
A, to manage its trades with the two remaining agents B and C, based not only
on their behavior towards the agent of interest but also their behavior with each
other.

In the first part, agent B is asked to refuse each trade offer made by agent
A, while agent C is expected to accept each trade offer coming from A. This
portion of the experiments assesses the ability of the RepNet agent (agent A) to
accurately determine which agent it is more likely to successfully engage in trades
with. In the second part, the roles are switched, and agent B accepts the trade
offers, while agent C refuses them. This portion assesses the ability of the agent
of interest to unlearn what it has learned and adapt its behavior accordingly. In
the third and final part, the RepNet agent is asked to not trade with either B
or C, that is, to only make use of the wait action. Said differently, the optimal
action according to its planning, while tracked throughout the experiment, is
not performed on the environment. All the while, agents B and C are asked to

0 20 40 60 80 100

0

0.5

1

1.5 B refuses B accepts B refuses

Time-steps

F
re

q
u

en
cy Objective

Subjective

Fig. 6: Frequency of the trade offers made by A, measured in 5 time-step intervals

BNAIC/BeneLearn 2020 166



Reputation-driven Decision-making in Networks of Stochastic Agents 13

engage in trades with each other. Agent B is asked to reject all trade offers,
while agent C is asked to accept all trade offers. The variables tracked are the
action distribution and reputation of B and C in the eyes of agent A, as well
as the evolution of whom agent A would rather trade with. This portion of the
experiment aims at testing the ability of the RepNet agent to draw conclusions
on how it should act based on interactions it is not directly affected by.

Fig. 7 shows the evolution of the reputations of agents B and C. Fig. 8
displays the evolution of the probabilities of agents B and C accepting trade
offers from agent A. Finally, Fig. 9 shows the evolution of whom agent A would
rather trade with.

Agent B is told to refuse, and agent C to accept, each trade offer during
the first 33 time-steps. In accordance with the results obtained in Section 7.1,
agent A is able to pick up on the other agents’ behavioral habits it is affected
by. As a result, the reputation of B and its probability of accepting trade offers
decrease. Similarly, the reputation of C and its probability of accepting trade
offers increase. All the while, agent A chooses to conduct the majority of its
trades with C. The following 33 time-steps reverse B’s and C’s roles. Similarly,
agent A is able to adapt its behavior accordingly and ends up trading mostly with
B. The reputation of B has increased, while the reputation of C has decreased.

During the last 33 time-steps, agents B and C are tasked with trading with
one another while A plays the role of observer, that is, only makes use of the
wait action. B is asked to refuse all trade offers, while C is asked to accept
all trade offers. Interestingly, Fig. 9 shows that, based on its planning, agent A
would prefer to keep trading with B, even though the reputation of B decreases
and the reputation of C increases in the eyes of A. Said differently, as long as B
does not refuse A’s offers directly, agent A will prefer to trade with B over C.

The explanation for this is twofold. Firstly, the subjective transition proba-
bility of a trade A might want to do with B is, in the eyes of A, conditioned only
by A’s own reputation. As such, B’s falling or rising reputation has no bearing
on A’s decision-making. Secondly, the probability of B accepting (or refusing)
A’s trade offer, according to A, can only be updated through the direct expe-
rience it has with B. As such, the action distribution does not change and can
thus not influence A decision-making either.

The simplest way of alleviating this shortcoming is to extend the subjective
transition model. Adding the reputation of the agent at the receiving end of
the trade offer (e.g., agent B) as a parameter to the subjective transition model
would allow agent A to incorporate other agents’ reputation in its decision-
making process. As such, if the subjective transition probability of B accepting
A’s trade offer were given by STA(A, offer state, wait s, accept state, rA, rB),
where the newly introduced parameter rB is B’s reputation, agent A could make
use of rB to assist with its decision-making. This comes with the drawback of
increasing the complexity of designing the subjective transition model.
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8 Summary and future work

In this paper, we revised the multi-agent framework called RepNet introduced
by Rens et al. [11], addressed its mathematical inconsistencies and proposed a
online learning algorithm for finding approximate solutions. The viability of the
framework was then tested in a series of experiments.

The current definition of objective transitions could be extended to incorpo-
rate the reputation of agents other than the RepNet agent. The experimental
results showed that the RepNet agent is incapable of adapting its behavior to
situations that do not directly affect it. Including the reputation of the agent at
the receiving end of a directed action in the directed transition model is likely
to lead to better-informed decision-making.

We did not address partially observable environments. Many real-world prob-
lems do not benefit from full observability, bringing the updated RepNet frame-
work back to a partially observable setting should be considered for future work.

The small-scale experiments conducted in Section 7 served as a proof of
concept for the RepNet framework. While applying the framework to problems
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Fig. 9: Average action taken by agent A. Action a = 0 corresponds to trading with
agent B, action a = 1 corresponds to trading with agent C.
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of realistic size was beyond the scope of this paper, the absence of large-scale tests
does raise questions as to the scalability of this approach. Real-world problems
can easily become too complex for transition models to be designed by any
one person without leveraging common state features [5]. A compact way to
represent real-world state spaces can be achieved by introducing elements of
relational logic [5]. From a logic programming point of view, a state space is
hereby defined by a collection of relations, while a state is an interpretation of
this collection [8]. Transition models and reward schemes are then represented
by probabilistic rules [10].
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Abstract. The Buyer Modalities framework divides buyers into 4 pro-
files, where each profile has its own specifics as to how it makes its pur-
chasing decisions. We built an online prediction system that categorizes
website visitors based on this framework. According to this categoriza-
tion, a specific banner ad variant tailored to that profile was shown to
the visitor, rather than a default “neutral” variant, resulting in a signif-
icantly improved CTR.

Keywords: Data mining · Predictive modeling · Ensemble methods ·
Online advertising.

1 Introduction

The Buyer Modalities framework [3] is a model that defines four distinct psy-
chological profiles of consumers according to how they make their purchasing
decisions. These four types – competitive, spontaneous, methodical and human-
istic – are illustrated in Fig. 1, and are based on two main axes: decision speed
(impulsive vs. deliberate) and rationale (emotional vs logical). It states that each
profile reacts to different types of information. If we consider, e.g., the purchase
of a new car, people with a methodical profile will be more interested in a detailed
list of features of the car as can be found in the brochure, whilst the humanistic
profile will be more served with testimonials from people who already own the
car.

The implication of this model for advertising is that in order to have an
effective campaign, ideally each profile is targeted with an ad tailored toward
its information needs. The issue with this of course is that one needs to know
the profile of the user, which one typically does not. In order to remedy this
issue, we propose a framework that uses historical user-website interaction data

? Supported by the Flanders Innovation & Entrepreneurship TETRA project “Start
To Deep Learn”.
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Fig. 1. A schematic overview of the four psychological profiles described by the Buyer
Modality framework.

to predict the user profile when needed, and hence allows the ad server to display
the appropriate variant for this particular user in a dynamic way. We show that
this approach results in a significant increase in the click-through rate (CTR),
i.e., the percentage of users viewing a web page who click on an ad displayed on
that page.

Ads come in many forms, e.g., pop-ups or “sponsored content”, each with its
own specifics. Our work involves so-called “banner ads”, banner-like graphical
ads often displayed at the top or in the margins of a page. Ever since the advent
of online advertising, the CTR has served as a key measure for the succes of
an ad campaign. Given the multi-billion industry that is online advertising, the
question of what makes an ad effective has been given quite some attention.

Specifically for banner ads, [8] look at the effect of the banner ad size, style
and orientation on its success. In [1], the authors attempt to predict the CTR,
rank according to CTR and categorize into “high” and “low” CTR a set of
±10K banners by using a custom defined set of 43 different visual features. In
all three tasks, they manage to consistently outperform the baseline. In contrast,
[7] performed two eye tracking studies to investigate the relation between visual
design and relatedness to the page content, and visual attention devoted to the
ad. In a first study, they show a professionally designed graphical ad to one group
of participants and a text-only banner (with the same text as the graphical ad)
to another. Besides this, half of the ads (graphical and text-only combined) were
related content-wise to the page, whilst the other half were not. They found
that none of these parameters had a statistically significant effect on the dwell
time. This prompted a second study, in which they showed that dwell time does
increase significantly if an ad is relevant to a user’s intent or task, rather than to
a page’s content. Somewhat closer ideologically to our work is [4], who studied
the effect of demographically targeting banner ads on users’ visual attention
and brand evaluation. This kind of targeting focuses on demographic properties
of the users such as gender, age and location, and follows the assumption that
“similar people act in a similar way”. Hence, by tailoring ads to these properties,
it should be possible to increase user attention. They found that targeting ads
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this way does indeed increase users’ visual attention, but not necessarily their
brand evaluation.

2 Conceptual setup

In this section we will first provide a conceptual description of our work, followed
by a detailed description of the concrete implementation for our use case in the
following section.

Conceptually, our setup is the following. Given a particular website that
displays ads, we track certain user-website interaction data and use this historical
data to extract features to be fed to a predictive model. Ideally, an expert should
identify salient elements to be tracked, e.g., specific hyperlinks or other so-called
Calls to Action (CTA), that are likely to appeal more to one profile rather than
the others.

We distinguish two phases. During a first phase data is being collected to be
used to train a predictive model. During this phase, different variations of the
same ad targeted to each profile will be displayed at random. This means that a
single user can get served different variants of the same ad. When a user clicks
on one of the variants, we assign the associated profile to the user to obtain the
training targets.

During the second phase, we continue to collect user-website interaction data,
and use this data to query the predictive model we obtained in phase one in real
time to obtain a user profile. This prediction then determines which ad variant
will be shown to this user.

3 Case specifics

Our experiment was performed in collaboration with a commercial partner,
Produpress [6], a company that owns amongst others a number of automotive
magazines and corresponding websites. We worked with two websites, www.
autogids.be (Autogids) and www.moniteurautomobile.be (Moniteur), which are
essentially the Dutch and French language versions of the same content. Both
sites target a Belgian audience. A large part of the content are extensive car
reviews. There were some differences in data collection during training and de-
ployment phases, which we will discuss in the following sections. These differ-
ences are due in large part to the fact that data collection was performed by
a third party for the first phase, whilst being performed by ourselves for the
second phase.

3.1 First phase

In this phase, four different variations of an ad banner for a specific car ad where
designed, one for each buyer modality, which were shown on a random basis. The
main difference between the variants was the CTA used (i.e., text), rather than
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the graphics. If a user clicked on a banner, the profile targeted by the variant
becomes the profile of the user. E.g., if a user clicked on the “competitive”
variant, when training the model later on we take this user as being a target for
the “competitive” profile.

The number of positive samples we collected per profile can be seen in Table 1.
Note that some users clicked on more than one ad variant; there were 353 unique
users who clicked on a variant for a total of 370 clicks. These users where treated
as targets for all the variants they clicked on. The numbers used in this and
following tables correspond to the different types as follows: 1 = competitive,
2 = spontaneous, 3 = methodical and 4 = humanistic.

Table 1. Number of collected positive samples per profile

Autogids Moniteur All

1 89 79 168
2 46 30 76
3 38 26 64
4 34 28 62

Total 207 163 370

Besides target labels, also aggregated and custom features for each distinct
user were collected. The 7 custom features basically correspond to (the URLs
leading to) the main sections of the car reviews, here translated from Dutch:
“Read our test report”, “View the gallery”, “Robotportrait and conclusion”,
“Tested version”, “Users reviews”, “Compare this car” and “Find a dealer”.
With these, the set of features for this specific experiment consists of, per user
and over the data collection period (abbreviations correspond to Fig. 2):

– The number of pageviews. (PgV.)
– The average time spent per pageview. (AtP.)
– The number of sessions. (#Ses.)
– The average time spent per session. (ASD.)
– Per custom feature: the number of sessions the user saw this particular con-

tent type, i.e., clicked on the corresponding URL. (CT1–CT7)
– Per ad variant: the number of sessions the user was shown this particular ad

variant. (AV1–AV4)

Note that at this stage, we did not have any other information besides these
aggregated features. This means that we were unable to determine when exactly
a user clicked on an ad, which in turn means that all aggregates were determined
by also taking into account data from after when a user clicked an ad. Ideally,
these statistics would have only been determined by using data prior to a click.
Fig. 2 shows the average feature values between clicking and non-clicking users
for each ad variant separately. This graph clearly illustrates that indeed there
appears to be a behavioral difference between both groups of users, as indicated
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by the fact that for “click” samples the average values are consistently higher
than for “no click” samples.

To further analyze the data, we first checked whether or not we could dis-
tinguish between “click” and “no click” samples in general, regardless of profile
type. For the remainder, all models were trained using Python’s Scikit-learn
package [5]. Table 2 contains the average accuracy over 200 Random Forest clas-
sifiers, each consisting of 200 trees with max depth = 3. For each iteration, a
random selection of negative samples was chosen to complement the positive
ones, and 20% of the data was held out as test data. As the data shows, perfor-
mance is far better than random, although also far from perfect, with Autogids
and Moniteur performing very similarly, suggesting that it is indeed possible to
predict what users are more inclined to click on an ad, regardless of profile type.

Table 2. Click vs. No Click classification performance over all ads by means of a
Random Forest classifier. Average performance over 200 forests of depth 3.

Dataset Train Test

Autogids 0.743 ± 0.017 0.679 ± 0.054
Moniteur 0.738 ± 0.018 0.655 ± 0.062

In a next step, we checked to what extend it was possible to distinguish
between each pair of profiles. The assumption is that if there is no correlation
between user profiles and ad variants, users will randomly click an ad variant
and hence it will not be possible to discriminate between ad pairs. To test this
hypothesis, we again looked at the average accuracy over 200 Random Forest
classifiers with 200 trees each and max depth = 3, with an 80/20 train/test
data split. The results are shown in Table 3, and except for the last pair (3 vs
4) show performance that is in line with the “click” vs “no click” scenario. This
indicates that it is possible, up to a point, to discriminate users based on the
ad variant they clicked. In other words: different people do have a different ad
variant preference.

Table 3. Full dataset: Random Forest accuracy per ad pair.

Ad Pair Train Test

1 vs 2 0.767 0.650
1 vs 3 0.836 0.689
1 vs 4 0.852 0.685
2 vs 3 0.854 0.576
2 vs 4 0.857 0.612
3 vs 4 0.806 0.501
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Since our assumption is that each user, regardless of whether they click an ad
or not, can be described by one of the four buyer modalities, we wish to train a
model that always predicts one of these profiles, and does not make a “neutral”
prediction. As training data we used all positive samples of all four variants
combined (i.e., no negatives), and again opted for a Random Forest model with
200 trees, albeit multiclass this time, to predict one of the four profiles for each
user. Train and test sets were stratified so as to have equal ratios of samples per
class. Table 4 shows results with max depth = 3 and max depth = 10 settings
by again taking the average over 200 iterations, with an 80/20 data split at each
iteration.

Table 4. Full dataset: multiclass Random Forest accuracy

max depth Train Test

3 0.515 ± 0.013 0.470 ± 0.022
10 0.946 ± 0.011 0.405 ± 0.043

Performance is considerably lower than with previous experiments, even tak-
ing into account the fact that the baseline is 0.25 this time. As can be expected,
the experiment with max depth = 10 results in overfitting, as apparent by the
large discrepancy between train and test accuracies. Nevertheless, we chose to go
with this model for phase 2, as our philosophy was that given the low number of
samples at our disposal, we preferred the model to overfit on these so that they
can serve as stringent prototypes, rather than making a more “diffuse” model.

3.2 Second phase

The second phase was ran in light of a specific advertisement campaign for
a new car. The compaign ran for four weeks total; two on Autogids and two
on Moniteur. Similar to phase one, five variants of the ad banner were made:
one for each profile, plus a “neutral” variant in case the profile of the user
could not adequately be predicted. A major difference with the first phase is
that we collected the user-website interaction data ourselves. This allowed us to
compute the features in an online way. Data was collected by means of a custom
JavaScript script, that would send the data to a PHP service to be stored in
a MySQL database. Information stored included, a.o., a unique user ID, page
visits and clicks.

To allow the website to request a profile for a visiting user, we developed a
Python API using CherryPy [2]. Whenever a profile was requested, the known
data for this user would be retrieved from the SQL database, and the same
features as used during phase one computed on the fly. A prediction was only
made if the user had visited the site during at least 3 sessions (including the one
at prediction time). If this was the case, we would then verify that the highest
profile score returned by the model > 0.35. If so, the corresponding profile would
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be returned. In all other cases (also if the user ID was unknown), a default
“neutral” profile would be returned. Recall that we used the max depth = 10

model described at the end of §3.1, whose performance is shown in Table 4.
We are not allowed to report specific CTR numbers because of contractual

obligations to our commercial partners. Hence, we can only report changes w.r.t.
the baseline. For both Autogids and Moniteur, a baseline CTR was determined
over 14909 and 12502 impressions of the “neutral” banner respectively. This
means that the users that belonged to this control group did net get to see a
banner based on our predictive system. The CTR for our system was determined
over 63284 and 56751 impressions respectively. This does not mean that all users
belonging to the test group saw a customized banner, simply that for these
users, we attempted to make a prediction. The CTR on banners displayed using
our system were 31% and 35% higher than the baseline CTR for Autogids and
Moniteur respectively, for an average increase of 33%.

Given this result, it was decided to run a second campaign, for a different
car by the same brand as the first campaign, using our system over a period of
four weeks, but without further involvement from our part. CTR for this cam-
paign were 129% and 94% higher that the baseline determined in the previous
campaign. Unfortunately, a new baseline was not determined and hence these
numbers are only reported by way of indication.

4 Conclusion

In this work, we described how the Buyer Modalities framework can be used
to improve the CTR on online ads. We built a Random Forest model based
on features extracted from aggregated web analytics, and used this model in a
system that allows to predict the Buyer Modality profile of a website visitor.
Using this predicted profile to dynamically adapt the ads shown to the user
resulted in a 33% improvement in CTR compared to the reference user group.

We would like to point out that our method theoretically does not require
a new training phase for each new ad, since although the ads change, the user
modality profiles do not. This implies that, given careful design of the ad variants,
once a model has been trained it should be applicable to any ad campaign.
Consequently, by collecting data over several campaigns, the model can also
continually be further improved by incrementally retraining the model.

Moreover, for this particular experiment the raw data consisted of aggre-
gated features. We expect that having data available at a more granular level,
as collected by ourselves in phase 2, should allow the development of more and
better features to further improve the accuracy of the predictive model.
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Abstract. Identifying the most efficient exploration approach for deep reinforcement
learning in traffic light control is not a trivial task, and can be a critical step in
the development of reinforcement learning solutions that can effectively reduce traffic
congestion. It is common to use baseline dithering methods such as ε-greedy. However,
the value of more evolved exploration approaches in this setting has not yet been
determined. This paper addresses this concern by comparing the performance of
the popular deep Q-learning algorithm using one baseline and two state of the art
exploration approaches, and their combination. Specifically, ε-greedy is used as a
baseline, and compared to the exploration approaches Bootstrapped DQN, randomized
prior functions, and their combination. This is done in three different traffic scenarios,
capturing different traffic profiles. The results obtained suggest that the higher the
complexity of the traffic scenario, and the larger the size of the observation space
of the agent, the larger the gain from efficient exploration. This is illustrated by the
improved performance observed in the agents using efficient exploration and enjoying
a larger observation space in the complex traffic scenarios.

Keywords: Reinforcement learning · Traffic optimization · Exploration.

1 Introduction

Traffic congestion is a global predicament. For instance, in the EU alone its cost is estimated
to be 1% of the EU’s GDP [15]. One approach for reducing this cost is optimization of traffic
flows by improving traffic light control policies. To find such policies, reinforcement learning
(RL) has a strong appeal as a paradigm that is able to find high performance solutions to
sophisticated problems. Research has been done into the application of RL to the problem of
traffic light control optimization in the past [1],[4],[13],[14],[18], often specifically concerning
application of deep RL algorithms [4], [13], [18].

A fundamental principle of RL is exploration, and the balance between exploration and
exploitation. Namely, how much does the agent explore its environment, versus how much
it opts for actions that it expects to return the most cumulative reward. Many different
exploration approaches exist for reinforcement learning [3], [6], [10]–[12]. These approaches
often perform differently in different settings, in addition to having different computational
costs [11], [12]. It has been shown that for some RL settings, simple exploration approaches
such as ε-greedy are insufficient for RL to be able to perform well, or at all [11],[12], which can
be caused by the reward function used and the complexity of the specific problem tackled.
This illustrates the importance of identifying effective exploration techniques for specific RL
settings. To the best of our knowledge, there has not been an attempt to investigate the
importance of efficient exploration in deep RL in the setting of traffic light control.
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This paper investigates a comparison between different exploration approaches in deep
RL for traffic light control. This, to facilitate better deep RL by identifying the value of
evolved exploration approaches in this setting, such as higher sample efficiency, or higher
final policy score. For that purpose, this paper compares the performance of the popular
deep Q-learning algorithm (DQN) [10] using one baseline and two state of the art exploration
approaches, and their combination. Specifically, ε-greedy is used as a baseline, and compared
to the exploration approaches Bootstrapped DQN, randomized prior functions, and their
combination. This is done in three different traffic scenarios, ranging from simplified to
simulating real traffic, in order to investigate the effect of exploration in different traffic
profiles.

This paper first introduces a theoretical background for deep RL and exploration. Second,
a description of the exploration techniques compared, along with the modeling of traffic light
control as an RL problem, are given. This is then followed by an explanation of the research
methodology and the experimental setup, leading to a presentation of the results obtained
and their analysis. Last, ethical and epistemic concerns are considered, implications of the
work are discussed and conclusions are drawn.

Altogether, the results obtained suggest a link between the complexity of the traffic
scenario, the amount of information accessible to the agent, and the gain from efficient
exploration. This is illustrated by the improved performance observed in the agents using
efficient exploration and enjoying a large observation space, in the complex traffic scenarios.

2 Background

This section introduces background information relevant to the work presented in this
paper. First, an overview of reinforcement learning (RL), is given, laying the basis for an
introduction to deep RL and a description of the deep Q-learning (DQN) algorithm [10]
that follows. Last, the principle of exploration is explained, followed by an overview of
dithering [12], deep and directed exploration.

2.1 Reinforcement learning

In RL, an agent operates in an environment. The environment provides information regarding
the state the agent is in and what actions it can execute. The environment is usually
described in the form of a Markov decision process (MDP), a stochastic control process
often used to model decision making in partially stochastic domains. A Markov decision
process is represented as a four-tuple, M = (S,A, P,R), where S represents the state space,
A the action space, P the transition function and R the reward function.

The agent interacts with the environment by observing a state st ∈ S, executing an action
at ∈ A, and receiving a reward rt ∈ R for the action executed. The agent is attempting to
learn a policy π, such that the expected reward over time is maximised.

In the Q-learning algorithm [17], the value of state-action pairs is estimated by the agent,
using iterative Bellman updates: Qt+1(st, at) = Qt(st, at) +α[yt−Qt(st, at)], where α is the
learning rate, and the target yt = rt+γmaxaQt(st+1, a). st+1 denotes the new state arrived
at after choosing action at in state st, a any action available at state st+1, and 0 ≤ γ ≤ 1,
is a discount factor. In many scenarios however, the state-action pair space is too large
for the computation or memorisation of each value Q(s, a) to be tractable. To avoid this
problem, function estimators such as neural networks can be used to estimate the Q value.
This gives rise to the use of neural networks in reinforcement learning, and specifically the
deep Q-Learning (or deep Q-networks) algorithm, commonly referred to as DQN [7], [10].
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2.2 Deep reinforcement learning with DQN

The DQN algorithm uses deep neural networks to estimate a mapping from states to Q-
values [10]. Instead of saving or computing each Q(s, a) value separately, the algorithm
learns a parameterized value function Q(s, a; θt). As a result, rather than learning the Q-
values directly, the algorithm learns the parameter set θ of the Q-function. The previous
Q-learning update then becomes:

θt+1 = θt + α(yt −Q(st, at; θt))∇θtQ(st, at; θt)

Here, yt = rt+1 + γmaxaQt(st+1, a; θt). To prevent instabilities, the DQN algorithm uses
an additional network, termed the target network, θ− [10]. The target network is the same
as the regular, or online, network. However, it only updates every certain τ time-steps, by
copying the parameters θ of the online network. This target network is used by the DQN
algorithm in the target term, which becomes instead: yt = rt+1 + γmaxaQt(st+1, a; θ−t ).

Double DQN [16] is a commonly used modification suggested to the original DQN
algorithm, which aims to reduce overoptimism caused by estimation errors, which DQN
is prone to. This is done by decoupling the selection of an action from its evaluation [16]. In
vanilla DQN, in the term yt = rt+1+γmaxaQt(st+1, a; θ−t ), the agent uses the same network
θ− for both selecting and evaluating an action. The double-DQN algorithm proposes using
the online network θ to choose the action, and the target network θ− to evaluate the choice.
The target term yt used in the double DQN update then becomes:

yt = rt+1 + γQt(st+1, arg max
a

Qt(st+1, a; θt); θ
−
t )

2.3 Exploration in reinforcement and deep reinforcement learning

In order to find an optimal policy through experience alone, which is the general premise
of RL, the agent must encounter the rewards that are part of an optimal policy at least
once. This leads directly to a necessity to explore the environment - if the agent does not
explore, how will it encounter valuable rewards that do not lie over its existing policy’s
path? However, the agent is also expected to efficiently converge into an optimal policy,
and not only explore its environment. This leads to one of the fundamental principles of
RL - exploration vs exploitation. Different approaches have been developed - ranging from
dithering, random action choosing exploration [10], to more evolved notions such as deep
and directed exploration [11], [12], and others. These approaches each attempt to achieve
efficient exploration through different means - from simplicity of computation to effective
analysis of the agent’s knowledge and uncertainty.

Dithering exploration The common baseline exploration strategy used in DQN is a
dithering exploration method, or ε-greedy. In ε-greedy, the agent takes a random action
(i.e., explores) with probability ε, and with probability 1− ε the agent takes the best action
according to its current Q value estimation. ε-greedy achieves state of the art performance
against many popular benchmarks [12], [16]. However, as discussed in [12], in environments
where rewards are scarce and distanced in the state-action space, and their values have
a large spread, the dithering exploration of ε-greedy can take an exponentially long time
to arrive at high-valued rewards. This raises the necessity for a more advanced type of
exploration, that can be directed over over multiple time steps. These concepts have been
coined ’directed exploration’ and ’deep exploration’ [12].
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Deep & directed exploration Directed exploration attempts to improve the efficiency
of the agent’s exploration by directing it. For example, to previously unexplored or under-
explored areas of the state-action space. To achieve a measure of directed exploration, an
uncertainty measure can be used - the more uncertain the agent is about the value of some
state or action, the more it can prioritize exploration. For directed exploration to be effective,
it often doesn’t suffice for it to be directed over one, or small number of time steps [12], but
must be directed over multiple time steps. The term ’deep exploration’ is used to describe
such an exploration approach, that is directed over multiple time steps [12].

3 Exploration In Deep Reinforcement Learning for Traffic Light
Control

This section will first motivate the choice to evaluate exploration techniques that focus on
deep and directed exploration. Following that, the agent used in the experiments is outlined,
and the exploration approaches it implements are described. Last, the modelling of traffic
light control as an RL problem used in this paper is presented.

3.1 Motivation

This paper opts to specifically identify the value of exploration approaches that focus on
achieving deep exploration, in the setting of traffic light control. These approaches have
been chosen not only for being state of the art in this field, but also for their potential
in this setting. In heavy traffic scenarios, suboptimal actions may carry a long term effect.
They may immediately cause congestion, and once there, it may be difficult to return to less
congested states [13]. Deep exploration may be able to improve the agent’s ability to escape
such scenarios, by directing its exploration along a specific path. While this path will not
necessarily pay in the short run, it may allow the agent to recover from congestion in the
longer run. Additionally, the ability of the agent to more efficiently explore areas of the state
action space that lie beyond areas plagued by negative rewards, as a result of employing deep
exploration, may allow the agent to learn optimal policies that will otherwise be unlikely for
a dithering agent to ever achieve.

3.2 The agent

The agent used in the experiments presented in this paper is a DQN agent, using the double-
DQN [16] modification. The agent implements the following exploration mechanisms: ε-
greedy, Bootstrapped DQN (BDQN) [12] and randomized prior functions [11]. The implementation
used in this paper, based on [8] and modified for the setting of traffic light control, allows the
agent to use any combination of the three different mechanisms listed above. ε-greedy has
been described in section 2.3, and has been chosen as it is the common baseline exploration
used in DQN [10], [16]. BDQN and randomized prior functions have been chosen as state of
the art exploration approaches that aim to achieve efficient deep exploration, and in addition,
for their ability to elegantly combine for even better exploration. BDQN and randomized
prior functions are described below.
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Bootstrapped DQN BDQN has been developed in an attempt to achieve a measure
of deep exploration, discussed in section 2.3. In order to achieve deep exploration, BDQN
approximates a distribution over Q-values, using a bootstrap. Bootstrapping is a technique
used to approximate a population distribution from a sample distribution, using random
sampling with replacement [5].

The bootstrap can be implemented efficiently using a shared neural network with several
heads. The shared network’s role is to learn a feature representation, while each head is
providing an independent Q-values estimation. A visualization can be found in figure 1. In
learning, the algorithm randomly samples an estimator (a ’head’) out of the bootstrap, and
follows the policy which is optimal for that estimator for some number of steps greedily or ε-
greedily. In the experiments done in this paper ε-greedy is used. The resulting experiences are
gathered in a buffer, and are available for all estimators to learn from, under some probability
that decides which experiences will be available to which estimator. Each estimator is trained
against its own target network / target network head.

In evaluation, an ensemble voting policy is used to evaluate which action has been chosen
by most heads. If there is no majority vote, an arbitrary choice is made between the actions
chosen by the most heads. The action is then chosen and executed.

Fig. 1: The BDQN architecture proposed in [12].

BDQN attempts to achieve a measure of deep exploration by following the policy of one
of the estimators for some number of steps. For this to be effective, the agent must guarantee
that in areas of uncertainty (under-explored areas of the state action space), the different
estimators will have different estimations. However, in BDQN this uncertainty, or variety in
the Q-value estimations, is only based on the observed data [11]. This can be problematic,
because in environments where rewards are very scarce, the agent may learn to believe that
there is no reward, and lose all uncertainty, rather than direct its exploration to remote,
unexplored areas of the state action space in the hope that they may contain rewards. Such
’prior’ drive for exploration, that is independent from the data, is proposed in [11] in the
form of randomized prior functions.

Randomized prior functions While usable with a regular DQN agent, the randomized
prior functions algorithm is designed to be combined with the BDQN model. To achieve
independent uncertainty, the randomized prior functions model consists of one additional
neural network for each Q-value estimator, or one shared neural network with one head for
each estimator. This additional network or head p is combined with the original estimator
f to form the final output Q, through a scaling factor β: Q = f + βp [11]. Q is then
used in the learning process to minimize the training loss. This results in uncertainty that
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is independent from the data: the Q value estimation always includes a neural network
initialized with random parameters. No matter the uniformity of experiences the agent
encounters (for example, only similar, negative rewards), it will still consider some additional
prior ’assumption’, in the form of the prior function, in regard to previously un-encountered
states. As a result, each estimator will always approximate the Q value of as yet un-
encountered states differently. This allows the agent to better direct its exploration, by
guaranteeing diversity between the estimations of the different bootstrap heads for previously
un-encountered states.

3.3 The model

The modeling of the traffic light control problem as an RL problem used in this paper is
follows work done in [13]. The problem is modelled as an MDP M = (S,A, P,R), where S is
the state space, A is the action space, P the transition function and R the reward function.
The open source traffic simulator SUMO [9] is used to generate the environment.

State space, action space & transition function The state provided to the agent is
represented as a set of stacked frames of size x ∈ Z+. Each frame is a matrix containing
current locations of vehicles in the agent’s observation space, and the current traffic light
configuration. The observation space of the agent is a square centered at the intersection
controlled. Each location of a vehicle is marked with a 1, and empty locations with a 0. The
traffic lights configuration is presented in the matrix as numbers between 0 and 1 chosen
arbitrarily. Stacking several frames allows the agent to extrapolate vehicle speed from the
state representation. x = 4 was used in the experiments, to achieve a balance between too
much information (complicating the learning process), and too little information (hindering
the capacity of the agent to learn effective policies).

The actions available to the agent at each time step are one of two traffic light configurations,
representing which lanes receive a green light. The transition function is defined by SUMO.

Reward function The reward function used is a modified version of the reward function
developed in [13]. At each time-step t, the agent receives a reward rt, computed by iterating
over all vehicles currently in the agent’s observation space, and summing different penalties:

rt = −1.5c− 0.2
N∑

i=1

ei − 0.3
N∑

i=1

di − 0.3
N∑

i=1

wi

This, where i represents the vehicle index. c is a penalty for switching the light configuration,
to prevent flickering. ei is a penalty for sharp decelerations, to penalize emergency stops. di
is a penalty for the ’delay’ of a vehicle, defined as 1− vehicle speed

allowed speed . Finally, wi is a waiting
penalty, defined as 0.5 for the first step of a car standing still, and 1 for any consecutive
step.

The modification included removal of a term that punishes teleportation of vehicles
(used in SUMO to mark traffic collisions) due to implementation challenges. Additionally,
the coefficient of the term c was increased from 0.1 to 1.5, after observation that otherwise
the penalty for light switching is barely noticeable with almost any number of cars.

BNAIC/BeneLearn 2020 184



Exploration in Deep Reinforcement Learning for Traffic Control 7

4 Experimental Setup

This section first describes and motivates the methodology used to evaluate the exploration
approaches in the setting of traffic light control. This is followed by a description of the three
traffic scenarios used to evaluate the exploration approaches.

4.1 Comparison of different exploration methods

To evaluate the impact of exploration in the setting of traffic light control, this paper
compares the performance of agents using ε-greedy, BDQN [12], randomized prior functions
[11] and a combination of the above for exploration, in three different scenarios. The performance
is evaluated and averaged over multiple repetitions.

The compared agents As all three exploration approaches investigated are designed to
be combined, the performance of the following six agents is compared: a regular DQN agent
ad regular DQN agent with a randomized prior function, both employing ε-greedy; Two
BDQN agents with increasing bootstrap size: 4 & 10 bootstrap samples (or neural network
’heads’); Last, two similar BDQN agents, combining randomized prior functions in their
bootstrap mechanism. The number of bootstrap samples has been chosen based on a relation
between computational complexity (the larger the bootstrap, the larger the complexity), and
gain from the bootstrap (the larger the bootstrap, the better the average performance). As
shown empirically in [12], the relative gain from sizes larger than 10 becomes insignificant
very quickly. The experimentation with different combinations of those techniques allows to
evaluate, in essence, even more exploration techniques, and is the reason it is done in this
paper.

The parameters of the agents investigated are not tuned for the specific setting of traffic
light control. For the purpose of full reproducibility, a full list of the experiment parameters
and agents’ hyper-parameters used is available with the code base used in the experiments.

The evaluation The evaluation is done as follows: an experiment is done, for each agent
in each scenario and each intersection considered. Each experiment consists of N learning
episodes. Every evaluation_frequency learning episodes, an evaluation phase is ran. In
order to reduce sensitivity to stochastic noise from the random nature of the traffic used in
the experiments, in the evaluation phase the agent’s policy is evaluated over number_evaluations
evaluation episodes, with ε = 0. The average episodic reward is then used for evaluation. The
exact parameters evaluation_frequency, number_evaluations used in each experiment are
detailed in section 5. To further reduce the impact of stochasticity, the entire experiment is
repeated X times for each agent and the results averaged. Finally, the performances of the
different agents are plotted against each other, in the form of their averaged evaluations’
rewards. The results are presented in section 5.

The different parameters mentioned above were chosen in the following way: N was
chosen from experimentation, as the range within which the agents’ learning starts to
plateau, in order to present the differences between the evaluations of the agents’ in the
clearest way. The evaluation_frequency used for each experiment set is chosen to achieve
balance between the number of episodes each experiment is ran for, and the number of total
evaluation episodes in the experiment. The number_evaluations parameter has been chosen
as a balance between the total number of evaluation phases and the total number of episodes
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in each experiment. The larger the number of learning episodes, and lower the evaluation
frequency, the larger the number_evaluations parameter. To balance computational costs
and time constraints with reliability of results, each experiment was chosen to be averaged
over X = 25 repetitions.

For the purpose of full reproducibility, all random generators used are fully seeded, and
the seeds logged. Each experiment is initiated with a different random seed, to guarantee
random initialization of the agents’ neural networks’ weights. The environment’s traffic
generator however is seeded with the same set of seeds for all experiments. This is done
to guarantee that while all agents experimented with are different, they are tested against
the same traffic simulations.

4.2 The traffic scenarios

The impact of the exploration approaches investigated in this paper is evaluated using the
traffic simulator SUMO [9], in three different traffic scenarios. In the first scenario, one set
of experiments is done. In the second and third scenarios, two separate experiment sets are
done, evaluating the agent against traffic of slower and faster average speed.

Scenario 1: The grid The first scenario is a basic grid-like road network, with one
intersection in the center, and four roads going one in each direction from the intersection:
north, east, south and west. A visualization of the grid scenario is presented in figure 2 a.
The first scenario is meant to capture a simple, independent intersection profile, that does
not consider or experience the behavior of other neighboring intersections. The traffic in this
scenario is generated randomly, based on a set number of vehicles over a set spawning time.

Scenario 2: Simulation of real traffic in Manhattan, New York The second scenario,
visualized in figure 2 b, is based on a section of the road map of Manhattan, New York, and
is a more complex network containing several interconnected intersections. The specific road
map used in our experiments is a 700 m2 section centered around the corner of Waring and
Woodhull Avenues. The map has been imported using SUMO’s web-wizard. This scenario
means to evaluate the effect of efficient exploration in a more complex traffic profile, where
the agent may observe and consider the behavior of neighboring intersections. Manhattan
enjoys a grid road-map design, that for the purpose of this work serves as both realistic and
practical to use.

The red squares marked in figure 2 point to the two intersections given to the agent to
control, as two separate experiments sets in this scenario. These intersections were chosen
due to their encapsulation of different traffic profiles. The top intersection, Waring-Woodhull,
presents a gentler form of traffic with significantly lower vehicle speed average. The bottom
intersection, Eastchester-Waring, experiences much higher average vehicle speed, and more
strongly resembles a central road. The throughput of both intersections is rather similar,
with a slightly heavier load going through Eastchester-Waring. In every experiment, all
intersections in the network except the one controlled by the agent are controlled by SUMO.
To generate traffic for the Manhattan scenario, a random routes generator is used, based on
real population distributions in the area, for the time of day 08:30 AM to 09:00 AM. The
traffic data is imported using SUMO’s web-wizard as well.
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Scenario 3: Simulation of custom traffic in Manhattan, New York A third scenario
is introduced in order to evaluate exploration under heavier traffic settings. This scenario
uses the same map, and experiments with the same intersections illustrated in figure 2 b.
However, in this scenario a random traffic generator is used for traffic generation, in order to
introduce much heavier traffic loads than the ones generated to simulate real traffic. Again,
two different sets of experiments are done in this scenario, one on each of the two marked
intersections in figure 2 b. The difference of the traffic profiles between the two intersections
is similar to the one in the second scenario: the top intersection enjoys slower average speed,
and the bottom faster.

(a) The basic grid map. (b) The Manhattan
map. The top red box
marks the intersection
Waring-Woodhull,
and the bottom
the intersection
Eastchester-Waring.

Fig. 2: The road maps used in the traffic scenarios.

Observation space specification An important difference between the scenarios is the
observation space provided to the agent in each one. The observation space provided in the
experiments done with the grid scenario and the Eastchester-Waring intersection in either
scenario, was 50 m2. This is done because in all three a larger observation space would be
outside the bounds of the environment. Due to the structure of the scenario, it was possible
to provide the agent with a larger observation space in the experiments done with the
Waring-Woodhull intersection in either scenario. An observation space of 84 m2 was chosen,
to balance complexity (the larger the observation, the more complex the learning) with
observation distance. This is done to allow the agent access to more information, which (1)
contains the adjacent intersections, enabling the agent to take their behavior into account,
and (2) providing the agent with the ability to react to incoming traffic earlier, as a result
of the larger observation space.

5 Results

This section presents and analyzes the results obtained in the experiments described in
section 4, divided between the different scenarios investigated and intersections controlled.
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For each set of experiments, the results presented are the episodic rewards attained in
the evaluations, as described in section 4.1. This is presented alongside a plot of the 95%
confidence interval of the mean, computed using the standard error of the mean (SEM) [2] of
the different experiments for two sample agents. These agents are chosen independently for
each experiment: the one that performed, on average, the best, and the one that performed
the worst. This is done to illustrate how significant are the differences observed between
the evaluations of the different agents in each experiment. Only two agents are presented
in order to reduce clatter in the plot. A simple moving average (SMA) of window size 5 is
applied to the data presented in order to smoothen the stochastic effect, to facilitate visual
analysis of the results.

5.1 Scenario 1: The grid

The results of evaluating the performance of six different agents against the grid scenario
can be found in figure 3. The agents’ policies are evaluated every five learning episodes, and
averaged over three evaluation episodes. Additionally, the 95% confidence intervals of the
means of the two sample agents are presented.

Fig. 3: Evaluating the agents against the grid scenario. The left figure presents the evaluations.
The number describes the size of the bootstrap sample (number of heads), and the p whether a
randomized prior has been incorporated. The right figure presents the same for two chosen agents,
including the 95% confidence interval of the mean.

Figure 3 illustrates that while all agents learn, the agents that appear to have the sharpest
learning rates are the regular DQN with and without prior function applied. However, as
can be seen in the right plot in figure 3, there is some overlap in the confidence intervals of
their means.

5.2 Scenario 2: Simulation of real traffic in Manhattan, New York

The results of evaluating the agents against the Manhattan scenario simulating real traffic
can be found below, separately for each set of experiments, controlling each of the two
intersections marked in figure 2 b. The agents’ policies are evaluated every training episode,
over two evaluation episodes, and averaged.

Traffic of low average speed Figure 4 presents the results of experimenting control of
the intersection Waring-Woodhull, the top of the two intersections in figure 2 b, capturing
a traffic profile of slower average speed.
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As observable, the difference between the evaluation scores in relation to the confidence
interval of the means, is mostly negligible, with the exception that the regular DQN achieves
inferior scores prior to episode 20. However, these scores are still well within the confidence
interval of the means of the other agent’s, and thus cannot be considered significant. This
behavior is attributed to the simplicity of the traffic profile, in relation to the amount
of information accessible to the agent in this scenario. As mentioned in section 4.2, the
observation space of the agents in this experiment is 84 m2. While the scenario can be
viewed as complex (several interconnected intersections, whose behaviors directly influence
each other’s traffic), which can translate to the learning process being more difficulty, the
volume of the traffic, including the average speed, is rather low, and thus the policy required
is not complex.

Fig. 4: Evaluating the different agents against the Waring-Woodhull intersection, simulating real
traffic. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.

Traffic of high average speed Figure 5 presents the results of experiments done controlling
the second intersection, Eastchester-Waring. Eastchester-Waring enjoys both traffic of higher
average speed, as well as higher traffic loads. No significant difference in the performance
of the different agents is observed. This is further illustrated with the confidence interval of
the means presented in figure 5 and their overlap.

Fig. 5: Evaluating the different agents against the Eastchester-Waring intersection, simulating real
traffic. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.
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5.3 Scenario 3: Simulation of custom traffic in Manhattan, New York

The results of evaluating the agents against the Manhattan scenario simulating random,
heavy traffic can be found below. The agents’ policies are evaluated every second training
episodes, and averaged over two evaluation episodes.

Traffic of low average speed The results for the intersection Waring Woodhull are
presented in figure 6. While the differences in the learning between most of the different
agents appears negligible, all of them appear to outperform the regular DQN agent. However,
as illustrated by the right plot in figure 6, the confidence intervals still have some overlap.

Fig. 6: Evaluating the different agents against the Waring-Woodhull intersection in the custom
scenario. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.

Traffic of high average speed The results of experimenting control over the intersection
Eastchester Waring are presented in figure 7. No significant difference is observed between
the evaluations of the different agents. This is illustrated strongly by the confidence intervals,
and their overlap, presented in the right plot in figure 7.

Fig. 7: Evaluating the different agents against the Eastchester-Waring intersection in the custom
scenario. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.
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5.4 Analysis

Many different factors can influence the results obtained by the different agents, ranging from
the reward function, the size of the observation space and its resolution, the state abstraction,
the complexity of the traffic scenario and sheer stochasticity. The type and complexity of
the traffic scenario, along with the observation space, are the main parameters that will be
considered in this analysis.

Here, the complexity of the scenario, while not defined exactly, considers the volume
and variety in the traffic and the number of surrounding interconnected intersections. In
particular, the "grid" scenario can be viewed as having lower complexity, as it has a medium
traffic volume, of low speeds and no neighbouring intersections. In the experiments done
in the scenario simulating real traffic, both intersections could be viewed as having higher
complexity: "WaringWoodhull", which is surrounded by a number of neighbouring intersections,
with lower traffic volume and a slower speed; and Eastchester-Waring, which is surrounded
by a similar number of neighbouring intersections, with somewhat higher traffic volume
with significantly higher average speed. Last, the scenario simulating custom traffic could be
viewed as having higher complexity as well, as it has similar parameters to the simulation
of real traffic, with the exception of significantly increased traffic loads. In addition, it is
worth mentioning that in the experiments done with the Waring Woodhull intersection the
observation space was larger than in any of the other experiments, as specified in section
4.2.

It appears that when the complexity of the traffic is low along with a smaller observation
space (the grid scenario), the simpler agents converge much faster, and more stably, to a
highly evaluated policy. However, when the agent is given sufficient information of sufficient
complexity (theWaringWoodhull intersection in both scenarios), deep exploration approaches
are able to outperform the ε-greedy approach, by achieving faster learning. This may imply
that advanced exploration approaches may play a significantly more critical role in much
more sophisticated scenarios, such as an intersection balancing many lanes, experiencing
many different traffic profiles, and provided a large observation space. The differences observed
were generally small and within a 95% confidence interval of the means however, and as such,
the strength of this implication is limited.

We note, though, that for the Eastchester-Waring intersection no improvements due to
more sophisticated exploration were observed, even though the traffic patterns are more
complex here than in the simple grid. The reason for this could be that as a result of the
faster traffic and the smaller observation space, along with sufficient complexity in the road
map and variety in the loads and directions of the traffic, the different costs and gains from
the different exploration approaches balanced out.

6 Discussion

The results obtained suggest a link between the complexity of the scenario, the information
accessible to the agent and the gain from deep exploration, as discussed in section 5.4.
However, the advanced exploration approaches investigated are expected to have significant
gain especially when utilized in environments with scarcity of significant positive rewards,
and abundance of smaller negative rewards [11], [12]. As a consequence, the reward function
used can almost directly dictate the gain from different exploration strategies. The reward
function used was not designed for any specific exploration approach. It is therefore plausible
that under a tailored reward function the gain from deep exploration would have been much

BNAIC/BeneLearn 2020 191



14 Y. Oren, R. A. N. Starre & F. A. Oliehoek

higher. This can be especially relevant in the case of reward functions that are known for
promoting good policies, while hindering learning.

7 Conclusions and Future Work

This paper investigated the value of deep exploration in the setting of traffic light control, by
comparing agents using different exploration approaches in three different traffic scenarios
of rising complexity. Specifically, the state of the art approaches Bootstrapped DQN [12]
and randomized prior functions [11] were compared to a baseline ε-greedy approach. This,
to facilitate better deep RL in traffic light control, by identifying the value of evolved
exploration approaches in this setting, such as higher sample efficiency or higher final policy
score.

The results presented in this paper suggest a link between the complexity of the traffic
scenario, the size of the observation space of the agent, and the gain from efficient exploration,
achieved with Bootstrapped DQN and randomized prior functions, under a specific parameters
configuration. Specifically, the more complex the scenario and the larger the observation
space, the more significant the gain observed from efficient exploration.

The results presented leave the following open questions, however. What is the exact
relation between the gain from efficient exploration and the complexity of the scenario?
How sensitive is this relation to specific parameter configurations, and specifically under
parameters optimized for the specific setting? Does this conclusion apply for other exploration
approaches? These questions are left for future work.
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Abstract. Since the behavior of a neural network model is adversely
affected by a lack of diversity in training data, we present a method
that identifies and explains such deficiencies. When a dataset is labeled,
we note that annotations alone are capable of providing a human inter-
pretable summary of sample diversity. This allows explaining any lack of
diversity as the mismatch found when comparing the actual distribution
of annotations in the dataset with an expected distribution of annota-
tions, specified manually to capture essential label diversity. While, in
many practical cases, labeling (samples → annotations) is expensive, its
inverse, simulation (annotations→ samples) can be cheaper. By mapping
the expected distribution of annotations into test samples using paramet-
ric simulation, we present a method that explains sample representation
using the mismatch in diversity between simulated and collected data.
We then apply the method to examine a dataset of geometric shapes to
qualitatively and quantitatively explain sample representation in terms
of comprehensible aspects such as size, position, and pixel brightness.

Keywords: Sample selection bias · Explainability · Outlier detection.

1 Introduction

Choosing the right data has always been an important precondition to deep
learning. However, with increasing application of trained models in systems
which are required to be dependable ([20], [2]), there is increasing emphasis
on making this choice well-informed ([4], [36]). Consider the perception system
of a self-driving vehicle which is partially realized using deep learning and is
expected to dependably detect pedestrians. To ensure that the system meets
such an expectation, it is necessary to choose training and validation sets that
adequately cover critical scenarios ([31], [34]) like residential areas and school
zones, where the vehicle is likely to meet pedestrians. Choosing, conversely, a
dataset that contains only scenes of motorway traffic, which does not cover many
scenarios involving pedestrians, is likely to produce a trained model that violates

? Work supported by the Wallenberg Artificial Intelligence, Autonomous Systems and
Software Program (WASP), funded by the Knut and Alice Wallenberg Foundation.
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expectations on pedestrian detection. Scenarios covered by a dataset may be con-
sidered sufficient when samples of adequate variety are represented in it. With
practical image datasets typically being high-dimensional and large, posing and
evaluating explicit conditions on the adequacy of sample representation is not
straightforward.

Interpretable assessment of sample representation Consider a traffic
dataset S of images Xi ∼ P (X|Y ) and annotations Yi ∼ P (Y ). A major practical
concern in such datasets is whether it adequately represents corner cases like in-
tersections with stop signs, roundabouts with five exits, etc. With the true/target
distribution of traffic scenes P (X,Y ) clearly containing instances of such cases,
any under-representation in S can be broadly framed as shortcomings in data
collection and processing, otherwise known as sample selection bias([37]). Given
that the dataset is eventually used to train a model that is deployed in a safety-
critical system, engineers may actively seek to properly comprehend and account
for such bias. But how does one express such bias in human interpretable terms?
One clue comes from annotations Yi ∼ P (Y ). In typical traffic datasets, Y en-
codes object class labels and bounding box positions. If necessary and feasible,
Y can be expanded to contain information such as location, lighting conditions,
weather conditions, etc. When Y is adequately detailed, the distribution of an-
notations PS(Y ) clearly becomes a reasonable, low-dimensional, and therefore a
human interpretable measure of sample representation in S. Engineers can ex-
ploit this notion to specify a distribution of annotations PT (Y ), expressing the
sample representation that is expected in the dataset. While the target distribu-
tion of annotations P (Y ) may be unknowable, PT (Y ) is an explicit declaration of
the sub-space that the dataset is expected to cover at the minimum. If S is equiv-
alently labeled, then selection bias (and thereby sample under-representation)
is simply given by the mismatch between expectations PT and reality PS . In
practice, however, due to the effort and expense involved in labeling, S may
either lack labels or may be completely unlabeled, meaning that PS(Y ) is often
unavailable. Combining simulation, outlier detection, and input attribution, we
show that it is possible to explain sample representation in a comprehensible
low-dimensional form, even when annotations are not explicitly available in S.

Contributions Delving into the less-explored area of explaining sample repre-
sentation in a dataset, we demonstrate a method that

– explains sample representation in interpretable terms for annotated data

– uses parametric simulation and outlier detection to do the same for non-
annotated data

In addition to visualization, we propose a quantitative explanation of sample
under-representation using an overlap index. Also, unlike existing methods that
mainly address imbalances in available data, ours can explain gaps in the avail-
ability of data. Such an explanation helps engineers better understand data as a
crucial ingredient of the training process. Downstream, this helps them re-asses
data collection methods and to verify, reason, or argue about – at times a re-
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quirement for standards compliance [3] – the overall dependability of the model
trained with this data. Data and code used in this work are publicly available3.

2 Explaining sample representation using annotations

Visualizing sample representation We now introduce a simple running ex-
ample of examining sample representation in a dataset S containing images of
two hand-drawn shapes4 – circles and squares (Figure 1). With the shape as the
sole available label, one can define S = {(Xi, Y

1
i )}, i = 1...N , where Xi is a

grayscale image of size (128, 128) and Y 1
i ∈ K = {0, 1} is the shape label, corre-

sponding to circle and square respectively. Understanding sample representation
in this dataset may be necessary when it is a candidate for training a model
that, for example, either recognizes or generates shapes. To ensure dependable
model performance, system designers may want to confirm that images of ade-
quate variety are represented in S. In a dataset of grayscale geometric shapes,
it is intuitive to analyze sample representation in terms of concerns such as the
size and position of the shapes on the image canvas, and the average brightness
of pixels in the shape. All these concerns can be captured by defining a 6-d an-
notation vector Y = (Y 1, ..., Y 6), including shape-type, which is known. With U
denoting the discrete uniform distribution, designers can begin with defining an
expected spread of shape-size using a latent label Y S ∼ U{30, 120}, denoting the
side-length in pixels of a square box bounding the shape. This can be followed
by defining expectations on the spread of (i) the top-left corner of the bounding
box, Y 2, Y 3 ∼ U{0, 128−Y S}, (ii) the bottom-right corner of the bounding box
Y 4, Y 5 ∼ U{Y S , 128}, and (iii) the average pixel brightness Y 6 ∼ U{100, 255}.
Put simply, PT (Y ) expects shapes of a specified range of sizes and brightness to
be uniformly represented in the dataset S. All positions are also expected to be
uniformly represented, as long as the shape can be fully fit in the image canvas.

1 0 1 0

0 1 1 1

Fig. 1: Samples from the dataset S. Only the class label Y 1 is available

To illustrate the idea of explaining sample representation using annotations,
an automatic labeling scheme Yi = L(Xi) is used to produce complete 6-d an-
notations for Xi. For circles and squares, it is easy to define a scheme that looks

3 https://github.com/dhas/SpecCheck
4 Collected from Quick, Draw! with Google – https://quickdraw.withgoogle.com/data
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at the extent of the shape and draws bounding boxes. The average brightness is
given by the mean of non-zero pixels in the canvas. The availability of labels Yi
helps assemble the actual distribution of samples in the dataset PS(Y ), allowing
direct comparison with expectations PT (Y ). Jointly visualizing label distribu-
tions for each shape (Figure 2) shows that, along all design concerns Y j , the
spread of PT (marked black) is much wider than the very narrow PS (marked
red). This shows that, while PT expects shapes of a broad range of sizes, posi-
tions and brightness to be represented, PS is clearly biased and massively over-
represents large and bright shapes located in the center on the canvas. As long
as the annotation vector Y is of manageable length, joint visualization becomes
an interpretable qualitative explanation of sample representation in the dataset.
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Yj |Y
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0 800.0
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Fig. 2: Explaining sample representation
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PY

Fig. 3: Illustration of V (PX , PY )

Quantifying sample representation By framing sample selection bias, and
thereby sample under-representation, as the mismatch between expected and
true label probability distributions, it becomes possible to quantify it using mea-
sures of statistical similarity. Choosing the right measure, however, requires a
proper understanding of the nature of each distribution. Having calculated it
using true labels of each sample, it is clear that PS(Y ) represents the actual
sample distribution in S. The distribution of expectations PT is of a slightly
different nature and, to better understand it, let us consider the expectation
PT (Y 6) = U{100, 255}, placed on the representation of average brightness of
shapes in the dataset. While the expectation on brightness being spread between
specified lower and upper limits is strict, imposing the spread to be uniform is
arbitrary. This is a deliberate measure of simplification to ease the considerable
burden in modeling expectations PT and let it capture the critical range of in-
terest in the target distribution. Put simply, expected sample representation is
primarily encoded by the support (1) of PT . By specifying strict support, but ar-
bitrary distribution of mass, sample representation can be quantified as the level
of overlap between the actual sample distribution PS and the expected sample
representation PT . To achieve this, we propose an overlap index V (PX , PY ) (2),
which is a measure of whether the supports of two distributions are similar. With
set difference ∆ and 1-d Lebesgue measure (length) of a set λ, V is essentially
the Steinhaus distance [11] with an added term I to make −1 < V < 0 indicate
containment of PY within PX . When not contained, for some positive likelihood
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in both distributions, as illustrated in Figure 3, V = 0 when they exactly over-
lap, V = 1 when they do not overlap, and 0 < V < 1 when the overlap is
partial. Indices V j(PT ) (3) quantitatively measure the level of overlap between
true and expected distributions for each label. Complementing the visual expla-
nation, overlap indices 0.4 < V j(PT ) < 1 seen in Figure 2, indicate that there is
only slight partial overlap between expectations and reality, confirming notable
sample selection bias and, therefore, significant sample under-representation.

RX = {x ∈ R : PX(x) > 0} (1)

V (PX , PY ) = I
λ(RX ∆ RY )

λ(RX ∪ RY )
, I =

{
−1 RY ⊂ RX
+1 otherwise

(2)

V j(P ) = V (PS(Y j |Y 1), P (Y j |Y 1)), j = 2...6 (3)

It is therefore clear that, given the expected representation and actual distri-
bution of labels in the dataset, it is possible to comprehensibly explain sample
under-representation both visually and quantitatively. However, the overlap in-
dex, which eschews mass and uses only support, is an incomplete measure of
sample selection bias, the pros and cons of which is discussed in Section 4.

3 Explaining sample representation using simulation

The dataset S contains information Xi in the image domain, while lacking in-
formation Yi in the annotations domain. Expectations, on the contrary, are ex-
pressed using annotations Ŷi ∼ PT (Y ), but lacks images. It is this gap in informa-
tion that prevents estimation of sample under-representation by direct compari-
son. There are two possible ways to bridge this gap, one of which is the labeling
scheme Yi = L(Xi) introduced earlier. Another way could be to generate images
X̂i = G(Ŷi), which is essentially parametric simulation. In this case of circles and
squares, it is possible to use a graphics package5 to draw shapes using size, posi-
tion, and brightness labels as parameters. We, in fact, choose this simple dataset
because both labeling and simulation of samples are easy, helping illustrate both
ways of bridging the gap and cross-checking the plausibility of estimating sample
representation. In many practical cases, however, the right method to bridge the
gap is difficult to judge since the relative expense is domain and problem spe-
cific. Addressing those numerous instances where unlabeled data is available and
labeling is expensive, we now show that it is possible to bridge the gap using sim-
ulation. This is done using a two-step process, described below, of (i) detecting
outlier annotations and (ii) estimating marginal sample representation.

Step 1 - Detecting outlier annotations To a dataset that mainly contains
large, centered shapes, can simulated small off-centered shapes appear as out-
liers? In order to explore this simple notion, we pose the following outlier hypoth-
esis - a test annotation Ŷi, that is unlikely to be observed in S, maps to a simu-
lated test sample X̂i = G(Ŷi), that appears as an outlier to S. Bridging the gap

5 We use OpenCV – https://opencv.org/

BNAIC/BeneLearn 2020 198



6 Parthasarathy and Johansson

by simulating shape images that follow specified expectations PT , the problem
of detecting sample selection bias turns into one of detecting outlier images. The
hypothesis is realized by an outlier detector ES (Figure 4) that samples test an-
notations from PT and maps them into images using a simulator, creating a test
set T = {(X̂i, Ŷi)}, i = 1...M (examples in Figure 5). Following [17], the subse-
quent assessment of whether under-represented simulated images appear as out-
liers to S is done using the predictive certainty of a shape label classifier F (X) =
PS(Y 1|X; θ), trained on the dataset S. The complete detector of outlier annota-
tions ES is formally described below in (4), where Fk is the logit score for the kth

shape and T is the temperature parameter which, as shown later, eases the de-
tection process. With F using a softmax output layer, we use maximum softmax
score as the measure of certainty. Put simply, with sets of outlier and familiar
annotations (5), the outlier hypothesis asserts that a good detector ES assigns
low scores Si for outlier annotations Ŷ − and high scores for familiar ones Ŷ +.

Si = ES(Ŷi, F, T ) = max
k∈K

exp(Fk(G(Ŷi))/T )∑
k∈K

exp(Fk(G(Ŷi))/T )
, Ŷi ∼ PT (Y ),K = {0, 1} (4)

Ŷ − = {Ŷi : PS(Ŷi) = 0}, Ŷ + = {Ŷi : PS(Ŷi) > 0} (5)

Simulator (G) Classifier (F )Ŷi ∼ PT (Y ) max Si

T

X̂i

Fig. 4: Detecting outlier annotations

1,24,5,120,101,100 0,14,20,118,124,205 0,35,1,79,45,203 1,78,40,114,76,120

1,19,31,87,99,100 1,88,40,120,72,154 0,55,74,85,104,213 1,16,11,125,120,181

Fig. 5: Samples X̂i from the test set T

To test the outlier hypothesis, four variants of the classifier F , all of which
follow the VGG architecture [33], are used. Classifiers mainly differ in the num-
ber of layers, with VGG05 (5 layers) and VGG13 (13 layers) being the shallowest
and deepest respectively. Each F is trained6 for 5 epochs on S with 50k samples
using the Adam optimizer [18] to achieve validation accuracy (on a separate set
of 10k samples) greater than 97%. However, [14] shows that deep neural nets
tend to predict with high confidence, making raw maximum softmax scores poor
measures of predictive certainty, and a simple way to mitigate this is tempera-
ture scaling, i.e. setting T > 1, in (4). As seen in Figure 6a, scores Si are tightly
clustered at T = 1 with relatively low variance, which makes it difficult to iden-
tify differences in predictive certainty between familiar and outlier annotations.
There is, however, a range of temperatures at which scores are better spread
and can exaggerate these differences. While a temperature that maximizes the

6 Each classifier trains within 10 – 15 minutes on an NVidia GTX 1080 Ti GPU
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variance of the score distribution seems appropriate, as seen in Figure 6a, scaling
also reduces its mean. Therefore a safeguard may be necessary to prevent the
mean certainty score from reducing to a level that questions the confidence of
predictions. These twin requirements can be achieved by the search objective
(6), which ensures a good spread in scores Si, while keeping its mean close to
the chosen safeguard ST .

T ∗ = argmin
T

LT − LV , LT =
(
µS − ST

)2

LV =

∑M
i=1

(
ES(Ŷi, F, T )− µS

)2

M
, µS =

∑M
i=1ES(Ŷi, F, T )

M

(6)

Upon temperature scaling with T ∗, the effectiveness of the detector ES in sepa-
rating outlier annotations Ŷ − from familiar ones Ŷ + can be measured using the
Area Under Receiver Operating Characteristic (AUROC). This is shown for each
F , averaged over 5 separate training runs, in Figure 6b. Based on an informal
grading scheme for classifiers using AUROC score suggested in [17]7, detectors
using VGG05 and VGG07 receive a ‘fair’ grade in identifying outlier annota-
tions, while the deeper networks get ‘good’ grades. The best outlier detectors,
with AUROC ≈ 0.85, are those with F as VGG09 and VGG13. These results
clearly endorse the viability of the outlier hypothesis that simulated images that
are under-represented in S, in terms of specified design concerns, appear as out-
liers to the right classifier trained on S. While PS , derived from labeling, is used
as a benchmark to test the outlier hypothesis, it is important to observe that
(i) classifiers that are good at outlier detection are, as seen in Figure 6b, those
that have the highest accuracy in predicting shape labels on the test set T , and
(ii) the temperature T ∗, at which the classifiers become good outlier detectors,
depends only upon the statistical properties of scores Si. Together, these ob-
servations mean that a good detector of under-represented annotations can be
assembled using only simulation, without any need for labeling.
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Fig. 6: Testing the novelty hypothesis

7 Quality of classification based on AUROC score - 0.9—1: Excellent, 0.8—0.9: Good,
0.7—0.8: Fair, 0.6—0.7: Poor, 0.5—0.6: Fail
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Step 2 - Estimating marginal sample representation As presented in Sec-
tion 2, we seek to comprehensibly explain sample representation in the dataset
S of geometric shapes on the basis of intuitive design concerns like size, posi-
tion, and brightness. However, the detector ES can only assess whether a single
combined 6-d test annotation is an outlier. To assess, for example, the diversity
of shape sizes in the dataset, independent of position, we turn to techniques
of input attribution. Given the detector ES , attribution techniques estimate
the contribution of each input label Ŷ ji to its outlier score Si. Among proposed
methods for input attribution [29], one promising framework is Shapley Additive
Explanations (SHAP)[25]. Using principles of cooperative game theory, SHAP
estimates marginal influence φji (7), which indicates how label Ŷ ji independently
influences the uncertainty score Si.

Si = ES(Ŷi, F, T ) = φ0 +
6∑

j=2

φji (7)

In satisfying an additive property, SHAP values are also semantically intuitive,
with negative, positive, and zero values of φji respectively indicating negative,

positive, and neutral influence of label Ŷ ji on the score Si. The outlier hypothesis
verified earlier implies that outlier (familiar) annotations tend to have a lower
(higher) certainty score Si. Therefore SHAP value φji > 0, which indicates that

the individual label value Ŷ ji tends to improve Si, becomes an indicator of that
label being represented in S. Through a campaign directed by the test set T ,
which systematically covers the specified range of scenarios PT , non-negative
SHAP values identify sample representation in the dataset S in terms of each
individual label. This can be seen in Figure 7a, where label values with a high in-
cidence of non-negative SHAP values (marked black) are likely to be represented
in S. This directly allows estimating the likelihood of test label Y j = l, Y j ∼ PT
being represented in the set S as the proportion of test labels Ŷ ji , in a sufficiently
small interval δ around l, whose SHAP values are non-negative.

P+
T (Y j = l |Y 1 = k) =

|{Ŷ ji : φji ≥ 0, Ŷ ji ∈ Y l}|
|{Ŷ ji : φji ≥ 0}|

, j = 2...6, Ŷi ∈ Ŷ

Y l = {l − δ, l + δ}, Ŷ = {Ŷi : Ŷ 1
i = k}, k ∈ K

(8)

Assessing the explanation By expressing expected diversity PT in terms
of specified design concerns, the two-step process, using a simulated test set,
identifies sample representation in each concern using non-negative influence on
predictive certainty. From the original broadly spread expectations PT (Figure
2), the process correctly eliminates a significant amount of outliers in each la-
bel dimension, producing P+

T (Figure 7b). P+
T shows label values likely to be

observed in the dataset S and has a roughly similar spread as the actual dis-
tribution PS . Also, using a test set with M=10k samples, the process estimates
sample representation in a much larger dataset with N=50k samples.
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Introduced originally in Section 2 to quantify bias between expected and
actual distributions of annotations, the overlap index V is also suitable for mea-
suring similarity between P+

T and PS . This helps quantify the effectiveness of es-
timating sample representation using simulation. The visual observation that P+

T

is a better estimate of true sample distribution, compared to the broad range of
expectations PT , is confirmed by better a mean overlap score V j(P+

T ) (see Table
1), over all labels and shapes, compared to mean V j(PT ). While this holds true
for both classifier instances shown in the table, the detector using F=VGG13
at T = T ∗, which has the best AUROC score in detecting outliers, produces the
closest estimate with a mean overlap score of 0.27. VGG05, with poorer AUROC,
has a weaker average overlap score of 0.39. The close correlation between AUROC
and V further confirms the plausibility of estimating marginal sample representa-
tion using SHAP scores. This shows that, while facing an expensive labeling pro-
cess, with the right means of parametric simulation, one can conduct a campaign
from a low-dimensional space of specified design concerns to estimate sample rep-
resentation in a given dataset and comprehensibly explain sample selection bias.
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Fig. 7: Explaining sample representation using simulation (F=VGG13, T = T ∗, ST =
0.7)

4 Discussion

Under-representation and outlier detection A good outlier detector ES of
under-represented samples must blur the distinction between simulated and real
images while emphasizing the distinction between over and under-represented
images. Figure 6b shows both conditions are jointly achievable, with classifiers
that have a high test set accuracy, and therefore generalize well, also having
better AUROC scores in detecting representation. However, as seen in Figure 8,
using regularization measures like batch normalization layers after each convolu-
tional block, while improving test accuracy, reduces AUROC scores for all classi-
fier instances. This is probably because it tends to blur [23] both forms of distinc-
tion. The figure also shows that dropout increases the test accuracy without any
major effect on AUROC scores, giving no special domain separation advantage in
detecting under-representation. Among the classifier configurations investigated
here, vanilla VGG, with the strongest correlation between AUROC and test set
accuracy, is observed to best addresses both forms of domain distinction.
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T P Y 1 V j(P ) Mean
V j(P )

j=2 3 4 5 6

- PT
0 0.60 0.47 0.59 0.47 0.75

0.57
1 0.57 0.45 0.57 0.45 0.76

T ∗

ST = 0.7

P+
T

F =VGG13

0 0.49 0.14 0.17 0.35 0.55
0.27

1 -0.19 0.26 0.16 0.17 0.56

P+
T

F =VGG05

0 0.47 0.33 0.29 0.44 0.60
0.39

1 0.31 0.34 0.27 0.25 0.56

1

P+
T

F =VGG13

0 0.49 0.30 0.40 0.15 0.69
0.36

1 0.30 0.28 0.21 0.13 0.69

P+
T

F =VGG05

0 0.22 0.14 0.54 0.47 0.65
0.43

1 0.57 0.29 0.56 0.15 0.70

Table 1: Quantitative bias estimation
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Fig. 8: Effect of regularization on AUROC

The importance of effective simulation It is crucial to note that high test
accuracy reflects the combined effect of plausible simulation and good general-
ization. It is equally essential, therefore, that the simulator produces samples
that are plausibly real. Ensuring effective simulation, while supporting a variety
of parameters, is undoubtedly a challenge for realistic datasets with richer con-
tent. As noted earlier, while this is domain and problem dependent, for images
at least, rapid advancements in the quality and range of graphics tools ([5],[9]),
potentially makes effective simulation plausible. However, with notable progress
in techniques that automate parts of the labeling process [7], it is also important
to assess whether labeling is cheaper for the dataset in concern.

Improving estimation of representation Figure 7b shows that while the es-
timated sample representation P+

T comes close, it does not overlap perfectly with
the true label distribution PS . As quantified in Table 1, even the best detector
(F=VGG13 at T = T ∗) has a mean overlap index of 0.27 indicating relatively
close, but only partial, overlap on average. At the individual label level, index
values show varying accuracy in support-matching. The representation of pixel
brightness 0.5 < V 6(PT ) < 0.8 is consistently underestimated, while those of
bounding box coordinates are better estimated. It is however clear from Table
1 that temperature scaling (T = T ∗ vs 1) and deeper classifiers (F =VGG13 vs
VGG05) improve estimation, indicating that more sophisticated techniques of
predictive outlier detection, like methods in [32], can improve estimation.

Balancing detail in specifying expectations The level of detail specified
in the expectations PT plays a key role in deciding the cost and benefit of ex-
plaining sample representation. An overly detailed breakdown of design factors
involves significant engineering effort, degrades interpretability, and overlooks
the remarkable benefits of generalization offered by deep learning. But well-
balanced expectations can provide valuable insight into training data. Take an
application like self-driving vehicles, where engineers actively seek a certain level
of understanding of operational scenarios [15] to ensure safe operation. Such un-
derstanding can be exploited to systematically explain, analyze, and manage
the data used to train models deployed in the system, thereby improving overall
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confidence in its dependability. While balancing details in the specification may
not always be easy, one advantage of this method is that it is semi-supervised.
Annotations included in the analysis impacts only the simulated test set T and
has no effect on the actual dataset S.

Extension to other domains This method of explanation can conceivably
be extended to a problem in another domain if (i) operational scenarios can be
reasonably broken down and (ii) model-based parametric simulators that can
generate data for this domain are available. For example, this method can use a
simulator of vulnerable road user trajectories [16] to examine a sparsely labeled
dataset of trajectories (e.g. [30]) and check whether it adequately represents
trajectories of risk groups like elder pedestrians, electric bikes, etc.

5 Related work

Sample selection bias Sample selection bias has been addressed in existing lit-
erature from the perspective of domain adaptation [19]. Previous methods to mit-
igate sample selection bias have mainly attempted to modify the training proce-
dures or the model itself to yield classifiers that work well on the test distribution.
Methods such as importance re-weighting [35], minimax optimization [24], kernel
density estimation [8] and model averaging [10] all fall in this category. While
these methods can yield classifiers that are able to generalize, the accuracy can
suffer when the two distributions differ greatly in the overlap of their support or
in the distribution of their mass. Our immediate goal, on the other hand, does not
seek to obtain a classifier that generalizes, but instead we seek to obtain a high
level understanding of the deficiencies of our training data and where the bias
stems from. This goal does not necessarily require a full specification of P (Y ), in-
stead we work with the weak proxy of PT (Y ) which attempts to match P (Y ) only
through the support. However, by eschewing mass-modeling, we gain a few ad-
vantages, one of which is the reduced effort in defining expectations. More impor-
tantly, since several existing methods for correcting sample selection bias work
only if the support of PT is included in that of PS and our method of explanation
tests precisely for this condition. Overlap indices V j(PT ) ≤ 0 guarantees that
the support of the biased distribution includes that of the expectations and cor-
rection measures like importance re-weighting are applicable. If 0 < V j(PT ) ≤ 1,
expanding the diversity of data collection is unavoidable. Thus seeking to un-
derstand and explain the data set can allow for an improved understanding of
the validity for methods that directly impacts the generalization performance.

Understanding sample representation Besides clustering approaches [6]
and feature projection methods such as t-SNE [26], previous research into pro-
viding a high level understanding of the training set has, for example, applied
tree-based methods to detect regions of low point density in the input space [13].
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High-dimensional explanations in the input space, however, adversely affects in-
terpretation, and ways to extend these methods to yield explanations using an
interpretable low-dimensional space of annotations are not immediately clear.

Bias estimation using simulation Closer to our purpose are the methods [28]
and [27] which detect inherent biases in a trained model using parametric simu-
lation and Bayesian optimization. While their goal is to find input samples where
the model is locally weak, our goal is to ensure that a given dataset meets global
expectations defined by a test set. This can verify that a system is dependable for
all considered scenarios, like [34], which is a standardized set of tests. However,
in reformulating bias detection as outlier detection, our method – unlike the
aforementioned methods – trades-off the ability to detect unknown unknowns
[21] in favor of a faster, global evaluation of bias. Combining our global and their
local approaches may, therefore, help ensure better overall dependability.

Shapley-based outlier detection Previous work using Shapley values for
outlier detection, such as [12] and [1], focus mainly on providing interpretable
explanations for why a data point is considered to be an outlier. It may also
be possible to extend their data-space explanations to the annotation-space, like
we do, using parametric simulation. However, pixel-wise reconstruction error has
well-known drawbacks in capturing structural aspects of data [22]. It is therefore
not immediately clear whether their use of auto-encoder reconstruction error is
as good at detecting structural under-representation as our technique of using
predictive certainty, which is calculated from the feature space of a classifier.

6 Conclusions

With data playing a crucial role in deciding the behavior of trained models, eval-
uating whether training and validation sets meets design expectations would be
a helpful step towards a better understanding of model properties. To aid this
evaluation, we demonstrate a method to specify expectations on and evaluate
sample representation in a dataset, in a human interpretable form, in terms of
annotations. Using parametric simulation to map test annotations into a test
set, the method exposes under-representation by measuring the uncertainty of a
classifier, trained on the original dataset, in recognizing test set samples. Tech-
niques of input attribution enable further conversion of predictive uncertainty
into a comprehensible low-dimensional estimate of sample representation in the
dataset. While refinements in estimation are possible, the core quantitative and
qualitative methods shown here are valuable aids in understanding a dataset
and, consequently, the properties of a model trained using this data.
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Abstract. This paper addresses the problem of inferring causation in
a pair of linearly correlated continuous latent variables. We first discuss
the limitations of the Direction Dependance Analysis (DDA) approach
and then introduce the Latent Causation (LC). Five variants (in terms
of dependency statistic) of the LC algorithm are assessed with ROC
curves, then we consider the case of a latent confounder (uniform or chi-
square distributed). While the distribution and the correlations of the
latent confounder influence the accuracy, experimental results show the
robustness of the method using bootstrapped p-values. Implications and
limits of the experimental results are then discussed together with future
directions.

Keywords: SEM · Latent Variables · Causal inference · Observational
data · Latent Confounder · Non normality · Simulations.

1 Introduction

An observed dependency between two variables A and B may have four different
explanations assuming no feedback loop: (1) A is a (direct or indirect) cause
of B, (2) B is a (direct or indirect) cause of A, (3) there is a hidden common
ancestor U of A and B, (4) a common descendant of A and B is kept fixed in
the observed dataset.

This paper lies at the crossroad between Structural Equation Modeling (SEM)
and causal inference literature. Widely used in psychology and in management
research, SEM is a family of techniques which allows the analysis of relationships
between continuous latent variables. Whereas the capacity of SEM to support
causal inference has been discussed during decades (Bollen and Pearl, 2013), we
consider here classical SEM as a set of confirmatory techniques since the causal
graph specified by the user can (and should) be drawn before the data collec-
tion. In that perspective, the fitting of the data on one or more competing causal
models should allow to reject wrong models and then inform the scientist that
at least one of its related causal assumptions is wrong (see Bollen and Pearl,

? We would like to thank the anonymous reviewers for their helpful comments.
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2013). However, for equivalent models (i.e., alternative models that fit any data
to the same degree (MacCallum & Austin, 2000 p. 213)) it is not always easy to
retrieve information about causation. So additional tools are needed.

In machine learning, causal discovery is not confirmatory but exploratory: its
goal is to build a causal model based on available data (data collection comes be-
fore the learning of a causal graph). Though in causal discovery most algorithms
make the assumption of causal sufficiency (also in cause-effect pairs (e.g., Guyon,
2014)), some of them address latent variables, e.g., the BPC algorithm (Silva,
Scheine, Glymour, and Spirtes, 2006), the FindOneFactorClusters (FOFC) algo-
rithm (Kummerfeld and Ramsey, 2016) or, more recently, the LSTC algorithm
(Cai, Xie, Glymour, Hao & Zhang, 2019). Shimizu, Hoyer and Hyvärinen (2009)
also show that a linear acyclic model for latent factors is identifiable when the
data are non normal. However, our work in this paper differs from this litera-
ture because we assume the structure of the measurement model already known
(i.e.: each indicator has been specified as measuring exactly one latent variable
of interest in our models) and we do not focus on building large causal graphs
from data.

In particular we focus on causal inference in pairs of latent variables. In a
confirmatory perspective, assuming linearity and non normality, the Direction
Dependent Analysis project (DDA project, 2020) offers an interesting starting
point to infer causation in a pair of latent variables since indications for a latent
confounder can also be detected using its independence component. However,
as stressed in (Wiedermann, Merkle, & von Eye, 2018), there is still a need
for improving the trustworthiness of the DDA approach in presence of mean-
ingful confounding. For this reason, in this paper we focus on improving the
independence component of the DDA approach by focusing in particular on
discriminating between causal and spurious confounding latent configurations.

The paper is structured as follows: First, we present the causal inference
setting we are interested in. Next, the DDA approach is introduced. Then, lim-
itations for using DDA with latent variables are presented. Next, we propose
the Latent Causation (LC) algorithm, grounded on the third DDA component
“Independence properties of predictor and error term” (see Wiedermann & Li,
2018). Then, we present some experiments on simulated data: benchmarking LC
with respect to to state-of-the-art DDA and sensitivity study of LC.

2 Problem setting

Let us consider two continuous correlated latent variables, denoted ξ and η and
some observable children variables called “indicators” (e.g., Kline, 2011) which
are functions of a latent variable plus an additive independent noise. Figure 1 vi-
sualizes a causal and a confounding topology we want to discriminate between.
As an example, values and distributions specified in Figure 1 are possible in-
stances which are used below as assignations for parameters in our simulations.
The number of indicators can also differ from instances in Figure 1. While we
want to confirm the correct causal direction ξ → η (and not ξ ← η) in causal
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models like Model 1, we also want to make sure we will not conclude in favor
of a causal direction for pairs (ξ, η) only correlated due to a latent confounder
(called U below) like in Model 0. Throughout the paper, linearity is assumed,
variables are continuous and all coefficients in theoretical models are presented
for standardized variables.

𝜉 follows a uniform distribution
𝜀𝜂 follows a random gaussian

distribution
𝜀𝑋1, 𝜀𝑋2, 𝜀𝑋3, 𝜀𝑌1, 𝜀𝑌2, 𝜀𝑌3follow
each a random gaussian distribution

X1 X2 X3 Y1 Y2 Y3

𝜀𝑋1 𝜀𝑋2 𝜀𝑋3 𝜀𝑌1 𝜀𝑌2 𝜀𝑌3

𝜉 𝜂

0.7 0.70.8 0.9
0.8 0.9

𝜀𝜂

0.49

U and 𝜀𝜉 follow each a uniform distribution

𝜀𝜂 follows a random gaussian

distribution
𝜀𝑋1, 𝜀𝑋2, 𝜀𝑋3, 𝜀𝑌1, 𝜀𝑌2, 𝜀𝑌3 follow
each a random gaussian distribution

X1 X2 X3 Y1 Y2 Y3

𝜀𝑋1 𝜀𝑋2 𝜀𝑋3 𝜀𝑌1 𝜀𝑌2 𝜀𝑌3

𝜉 𝜂

0.7 0.70.8 0.9
0.8 0.9

𝜀𝜂0.7𝜀𝜉

𝑈

0.7

Model 0 Model 1

Fig. 1. Latent variables are represented by ellipses or circles. Observed variables are
represented by rectangular boxes. Both models are completely standardized. In Model
1, there is a causation between ξ and η but not in Model 0. Note that the distributions
of ξ and η also differ between both models.

3 The DDA approach

The DDA project regroups the techniques which address the inference of causa-
tion by considering 3 aspects: 1. distributional properties of observed variables,
2. distributional properties of error terms of competing models and 3. inde-
pendence properties of predictor and error terms of competing models. In this
paper we will focus on the third aspect. The rationale of our work resides in
this consideration by Wiedermann & Sebastian (2019a, p. 15): “Considering the
behavior of DDA components under confounding, the DDA independence com-
ponent is the most important criterion to confirm that no strong confounders are
present (or, at least, that the influence of confounders is minimal). Thus, HSIC-
and dCor-tests are crucial DDA procedures. When these tests indicate the pres-
ence of meaningful confounding, results of the remaining DDA procedures are no
longer trustworthy.”
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The algorithm used for the (third) DDA independence component is already
well-established in machine learning (see Peters, Janzing & Schölkopf, 2018, p.
62):

1. Fit a regression model f̂Y of Y on X
2. Test whether the residual Y − f̂Y (X) is independent of X.
3. Repeat the procedure by exchanging the roles of X and Y .
4. If the independence is accepted for one direction and rejected for the other,

infer the former one as the causal direction.

However, while the algorithm presented by Peters et al. (2018) is commonly
used to determine the causal direction for data with relationships strictly non-
linear, in the DDA framework, this algorithm is used assuming linearity and
non-normality (Thoemmes, 2019).

Here is the rationale behind the algorithm for DDA. For instance, let us then
assume that X and Y are two related continuous random variables such that :

Y = aX + εY with a 6= 0 (1)

where εY is the error term from a regression where Y is explained linearly as a
function of X. And let us assume that either X or εY is not normally distributed.
In this context, we get the falsehood of the expression

X ⊥⊥ εY AND Y ⊥⊥ εX (2)

where εX is the error term from an alternative linear regression having X ex-
plained linearly as a function of Y :

εX = X − bY with b 6= 0 (3)

The above reasoning relies on the corollary of the Darmois-Skitovich theorem
(see e.g.: Eberhardt, 2017, p.86):

Corollary 1. Let X1, ..., Xn be independent, non-degenerate random variables.
If for two linear combinations :

l1 = a1X1 + ...+ anXn with ai 6= 0 (4)

l2 = b1X1 + ...+ bnXn with bi 6= 0 (5)

at least one Xi is not normally distributed, then l1 and l2 are not independent.

After substitution of Y in (3) by its expression from (1):

εX = X − b(aX + εY ) = (1− ab)X − b εY (6)

it appears both εX and Y are linear combinations of X and εY . Applying Corol-
lary 1, it can then be affirmed that if X and εY are independent, non-degenerate
random variables that are not normally distributed in (1), then Y and εX can
not be independent in (3).

Then, as nicely illustrated in Spirtes & Zhang (2016) and in Wiedermann &
Li (2018), this asymmetric pattern of the causality can leave a footprint in the
data. Furthermore, the shape of the distribution does not matter, since it is not
a normal distribution.
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3.1 Limitations of the current DDA approach

Here we address the limitations of the current DDA approach for causal inference
in pairs of latent variables:

1. DDA does not exploit all the available information in measures
of dependencies. The DDA independence component approach relies on
a combination of two statistical tests of independence (see e.g., in equation
(2), one test for each possible causal direction). Four conclusions are possi-
ble: (a) rejection of both independences (i.e., suspicion of confounder), (b)
no rejection of both independences, and rejection of only one of the two
independences which gives either (c) X → Y or (d) Y → X. It is worth
remarking what follows:
(a) A non-significant result for a test of independence is recom-

mended to infer a causal direction. But, the lack of independence re-
jection is not a proof of independence. So, in DDA, how to be sure we
are not missing a confounder because of a lack of power in the test?

(b) Insufficient use of the continuum of dependencies. Given a pair
of variables, there is not only simplistically either “independence” or
“dependence” but a whole range of dependence strengths. Even if DDA
concludes in favour of the presence of a confounder (i.e, both indepen-
dences are rejected), the comparison of statistics of dependence from
both tests may convey additional information to favour one of the two
causal directions, under the assumption there is also causation in the
pair of variables of interest (beyond a simple spurious correlation).

2. Limit of the DDA distinction between “presence of a confounder”
and “causation”. In the DDA framework, the presence of a confounder may
be revealed by rejection of the independence for both directions whereas a
causation should be revealed by the rejection of the independence for only
one direction. But some theoretical models can include both causation and
confounder. Considering pairs of latent variables like in the example of the
causal Model 1 (Fig. 1, right) with no confounder between ξ and η, the latent
variable ξ can also be considered itself as a latent confounder between the
two groups of observed indicators: (X1, X2, X3) and (Y 1, Y 2, Y 3), where
each indicator is a linear combination including the latent variable ξ. So,
since ξ can be both a cause of η and a confounder between the two groups of
indicators, maybe it would be better not to rely on the DDA independence
component if we want to confirm there is no additional confounder between
latent ξ and latent η when it concludes in favor of a causation. And, if the
DDA independence component concludes there is a confounder, the question
of the direction for a possible causation remains still open after.

So, to infer a causation in a pair of non-Gaussian linearly related latent variables,
the point is maybe not to make sure first there is no latent confounder but to
focus instead on a direct comparison of the strength of each dependence (one for
each possible causal direction) to try to infer (if possible and with an associated
level of confidence) a causal direction like LC does.
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4 The Latent Causation algorithm

The main difference between the LC and the DDA independence component is
related to the computation of differences between the statistics of dependency,
which is an essential element to identify a causal direction. The Latent Causa-
tion (LC) pseudocode is detailed below. After the computation of factor scores
(Fξ, Fη) in steps (2a) and (2b) representing latent variables ξ and η respectively,
the steps (2c), (2d), (2e) and (2f) implement the DDA independence component.
However, if there is a true causal link between ξ and η, a difference of dependence
should be observed between values computed in (2e) and (2f). Unlike classical
DDA (yet inspired to a sensitivity analysis performed by Wiedermann and Se-
bastian (2019b) using bootstrap), the difference of values in (2f) and (2e) is
always saved by LC in step (2g). While a positive score in (2g) is favouring one
causal direction, a negative score is favouring the opposite causal direction. A
non-parametric bootstrap (B resamples) is then adopted to assess the significa-
tivity of the consensus. LC may reach 3 conclusions in step (4): “infer η → ξ”,
“infer ξ → η” or “data do not allow to conclude.” Unlike in classical DDA, we
do not need to have a non significant p-value to conclude for a causal direction.

The Latent Causation algorithm
Input:

– An observed dataset with indicators divided in 2 pre-defined groups (with
no overlap): X for the indicators of ξ, Y for the indicators of η.

– A metric to rate the strength of a bivariate dependence
– α: a threshold (to define acceptable type I error rate)
– B: number of bootstrap datasets

Output: A decision taken by the algorithm:
“infer η → ξ” OR “infer ξ → η” OR “data do not allow to conclude.”

1. From the original sample of size n, draw B bootstrap samples (size = n,
with replacement).

2. For each bootstrapped sample do :
(a) Compute the factor scores ”Fξ” to represent ξ using X (exclusively)
(b) Compute the factor scores “Fη” to represent η using Y (exclusively)
(c) Regress linearly Fη as a function of Fξ and save the residuals (residFη

)
(d) Regress linearly Fξ as a function of Fη and save the residuals (residFξ

)
(e) Measure how strong dependence(residFη ,Fξ) is
(f) Measure how strong dependence(residFξ

,Fη) is
(g) Save the difference between both measures from (f) and (e)

3. Based on the B saved differences (in 2g), select a percentile confidence in-
terval based on probabilities (α/2 ; 1− α/2).

4. Select a conclusion:
– If 0 is not included in the confidence interval:
• If a majority of bootrapped samples gave:

dependence(residFη
,Fξ) > dependence(residFξ

,Fη):
“infer η → ξ”
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• Else:
“infer ξ → η”

– Else:
“data do not allow to conclude.”

Some considerations on the LC algorithms follow:

– Factor scores computation: since the information about the latent variables
ξ and η is only available through noisy indicators, the question about their
representation naturally arises. While each indicator is assumed to be a
linear descendant of a specific latent variable of interest, we choose Principal
Component Analysis (PCA) (Husson, Lê & Pagès, 2009) to compute factor
scores separately for each latent variable ξ and η.

– Dependency measures: we considered 5 measures in our LC experiments:

• Spearman’s correlation (in absolute value).

• Brownian distance correlation (Szekely, Rizzo, & Bakirov, 2007): it re-
turns the dCor statistic (a score between [0;1] where 0 stands for inde-
pendence).

• dCor’s p-value : it estimates a p-value using permutation bootstrap.

• Hilbert-Schmidt Independence Criterion (HSIC; Gretton, Fukumizu, Teo,
Song, Schölkopf & Smola, 2008): The closer HSIC is with 0, the weaker
is the dependence.

• HSIC’s gamma-approximated p-value: The smaller the p-value is, the
more we are in independence rejection.

– LC relies on some assumptions:

• Two correlated non normal latent variables (i.e., ξ and η).

• All the relationships are linear (measurement model included).

• There is no cycle in the causations.

• Two distinct groups of indicators are available for ξ and for η respectively.
Each indicator is strongly correlated (e.g., Pearson’s correlation ≥ 0.7 in
our simulations) with its corresponding latent variable (either ξ or η).

• Each indicator is linearly function of its latent variable + an independent
random Gaussian noise.

• If there is a causal effect between ξ and η, it is assumed the effect is the
same for every individual (causal effect homogeneity).

• There is no unusual or influential observations.

• All the variables are continuous.

5 Experimental results

The experimental results are divided in two subsections: first, we use simulations
to compare LC and DDA. Second, additional analysis are provided to further
explore the performances of five LC variants.
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5.1 Benchmarking LC vs DDA

Data generation. In this section, to compare LC and DDA, we used the causal
structures from Model 0 and Model 1 to generate datasets by Monte Carlo
(1000 datasets for each model). The distributions and the standardized values
specified for the different coefficients (at the Population level) are available in
Fig. 1. Since we want to infer causation beyond correlation, we arbitrary specify
in every simulation in this paper the same theoretical Pearson’s correlation of
0.49 between ξ and η.

To generate our datasets and compare the methods, we implemented a sim-
ulator in the R language (R Core Team, 2019)1. We consider two groups of 3
indicators: X1, X2, X3 and Y1, Y2, Y3 measuring latent ξ and η respectively. Since
we cannot directly apply the DDA independence component on observed indica-
tors, factor scores representing ξ and η are first computed using the first axis in
two separated PCA (i.e., first axis build on X1, X2, X3 and other first axis build
on Y1, Y2, Y3). So, we used PCA2 in a similar way in LC and before applying
DDA.

Accuracy assessment. Table 1 reports the comparison DDA vs LC in terms of
accuracy. In DDA, since two p-values are used for taking decisions, 4 conclusions
are possible: ξ causes η, η causes ξ, suspicion of a latent confounder (both p-
values are sig.) and the “do not conclude” option (none of the 2 p-values is sig.).
In LC, based on a bootstrapped confidence interval, 3 conclusions are possible:
ξ causes η, η causes ξ and the “do not conclude” option.

Concerning DDA for Model 0 using HSIC gamma p-value or HSIC p-value
bootstrap (Sen and Sen, 2014) as independence test, it appears that (72 +
43)/1000 = 11.5% and (100 + 84)/1000 = 18.4% of the conclusions are false
positives (FP) (indicating wrongly causation) which exceeds in both cases the
maximum α = 5% allowed. In contrast, DDA’s dCor p-values seem to work fine
on Model 0 (FP rate: 0.4%), though this method shows less statistical power
(only 303 on 1000 datasets were true positive (TP) causal conclusions) than LC
variants (401 TP using Spearman as independence statistic, 510 TP using dCor-
stat, 343 TP using dCor-p-value, 594 TP using HSIC-stat and 608 TP using
HSIC’s gamma-approximated p-value).

In Table 1, all LC variants show a FP rate under the expected α = 5%
(e.g., the observed total FP rate using HSIC-stat = (1 + 2)/1000 = 0.3%) and
outperform in power (i.e., number of TP in Model 1) DDA’s dCor which is the
only considered DDA variant with a FP rate below α = 5%.

Discussion of results. To infer causation in a pair of correlated latent vari-
ables, we are looking for an algorithm with low type I error rate (i.e a proportion
of FP below the specified value for α) when there is no true causation between ξ

1 Code in https://github.com/apollaris/LatentCausation
2 In experiments we use the PCA function (using default option “scale.unit = TRUE”)

from the R package FactoMineR (Le, Josse & Husson, 2008).
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Table 1. The DDA independence component applied on factor scores from PCAs vs.
the LC algorithm (DNC stands for “Do not conclude”)

DDA
independence
component

Model 1: true causation ξ → η Model 0: no causation but a latent
confounder

Independence
statistic

ξ → η
(TP)

η → ξ
(FN)

Con-
founder
(FN)

DNC
(FN)

ξ → η
(FP)

η → ξ
(FP)

Con-
founder
(TN)

DNC
(TN)

dCor 303 0 0 697 2 2 0 996
HSIC - gamma 860 1 28 111 72 43 34 851
HSIC - bootstrap 870 1 71 58 100 84 62 754

LC algorithm Model 1: true causation ξ → η Model 0: no causation but a latent
confounder

Independence
statistic

ξ → η
(TP)

η → ξ
(FN)

DNC
(FN)

ξ → η
(FP)

η → ξ
(FP)

DNC
(TN)

Spearman 401 0 599 19 0 981
dCor - stat 510 0 490 1 0 999
dCor - p-value 343 0 657 0 0 1000
HSIC - stat 594 0 406 1 2 997
HSIC - p-value
gamma

608 0 392 0 3 997

Parameters specification:
- For both DDA and LC: 1000 samples generated for Model 1 and 1000 samples for Model 0;
sample size=500; α=0.05

- For DDA only: the number of replicates used for the estimation of each dCor-pvalue and the
number of resamples used to compute each bootstrap’s HSIC p-value were both set equal to 500.

- For LC only:, we used B = 1000 (bootstrap datasets) and the number of replicates used for the
estimation of each dCor-pvalue was always set equal to 300.

and η (e.g., Model 0) and with good ability to retrieve the correct causal direc-
tion (i.e., statistical power represented here by the number of TP for datasets
from Model 1). Looking only in our results at methods with an acceptable type I
error rate, it appears all the five variants of LC are more powerful than the only
acceptable DDA variant (using dCor as independence statistic). Furthermore,
Table 1 shows the impact of the dependence statistic on the results (see e.g., for
LC: 343 TP using dCor - p-value but 608 TP using HSIC’s gamma-approximated
p-value). The next section will present a LC sensitivity study to assess the role
of the five statistics.

5.2 LC sensitivity study

Here we perform additional simulations to study the sensitivity of the LC ac-
curacy to its parameters. Good accuracy means low type I errors (i.e., the pro-
portion of FP can not be larger than α in the absence of causation between
ξ and η) and good statistical power (i.e., a large number of TP is expected
under causation between ξ and η). First, we show the statistical power of LC
increases for larger sample sizes. Next, α’s value is manipulated to show that
LC does not exceed the allowed the type I error rate. Then we show that the
TP rate increases with α. Finally, ROC curves visualize the ability of the five
LC variants to discriminate beween a spurious correlation (i.e., Model 0) and a
causation (i.e., Model 1). Because many different confounders can make a pair
of latent variable (ξ,η) correlate, we conclude this section by a robustness anal-
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ysis to answer the question: “Can a latent confounder U (due to its distribution
and its correlations with ξ and η) increase LC’s number of FP in the absence of
causation between ξ and η?”

Sample size can increase the power of LC. 1000 datasets of different sample
sizes (n = 200, n = 300, n = 400, n = 500) were simulated according to Model
1 (Fig. 1, right), i.e. with a true latent causation ξ → η.

As observed in Fig. 2 upper left, the larger the sample size, the better is LC
in retrieving ξ → η. Furthermore, comparing the five variants of independence
statistics, the methods based on HSIC appear here to be the most powerful.
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Fig. 2. Upper left: Power of the LC algorithm for retrieving the true ξ → η as
a function of the sample size and the statistic used to measure independence; 1000
simulated datasets based on Model 1 for each sample size. Upper right: observed type
I error rate (% of FP) for LC as a function of α. Lower left: observed power rate (% of
TP) for LC as a function of α. Lower right: ROC curves for the 5 variants to measure
dependence using LC ; for each curve, the different points correspond to different values
assigned to α. For each last 3 plots: Sample size=500, 1000 simulated datasets for each
estimation.
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Manipulations on α. Using 1000 datasets generated from each model (Model
0 and Model 1) with a sample size n = 500, we manipulate the specified value of
α to get the number of FP (for data generated from Model 0) and the number
of TP (for data generated from Model 1). Here are the different values assigned
to α: .01, .02, .03, .04, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9.

Results in Fig. 2, upper right, show as expected for Model 0 that observed
type I error rate (i.e., the proportion of FP) is always lower than the specified
value of α in our simulations (whatever the method or the value of α).

Fig. 2 lower left shows that the number of correct causal direction (TP)
increases with higher values of α and that the number of TP also differs be-
tween the five variants (measures of dependence). Notably, using HSIC’s gamma-
approximated p-values seem to get more TP compared with other observed meth-
ods. Then, by increasing α the number of both TP and FP increases as well. In
Fig. 2 lower right, ROC curves to discriminate between Model 0 and Model 1
show that the methods (apart from Spearman correlation) present similar good
abilities to discriminate between Model 1 (causation) and Model 0 (confounder).

Robustness: distribution and correlation with a latent confounder.
Since estimated scores Fξ, residFη

, Fη and residFξ
in Model 0 are all linear com-

binations of a sum of terms including the latent confounder U , according to
Corollary 1 (of the Darmois-Skitovich theorem), Fξ 6⊥⊥ residFη and Fη 6⊥⊥ residFξ

are expected together because U is not normally distributed (see also, Wieder-
mann et al., 2018). So, using additional simulated datasets (Monte Carlo), an
empirical analysis of the robustness for LC is now performed to know if inflated
type I errors (i.e, FP) can be avoided. While keeping constant the theoretical
Pearson’s correlation between ξ and η (as a reminder it was arbitrary set equal
to 0.49 for our simulations), we generate additional datasets after manipula-
tion of the distribution (symmetric uniform VS asymmetric chi-square) and the
Pearson’s correlation between U and ξ (and then also the Pearson’s correlation
between U and η) (see Fig. 3: Model 0 and its 4 variants : 0a, 0b, 0c and 0d
for correlations assigned to the confounder). Because all methods to measure
dependence were also compared here, we have now a “2 distributions of U × 5
models × 5 methods for statistics of dependence” design.

In the different plots in Fig. 4, the correlations of U influence the number
of FP: for a strong correlation between U and ξ, the risk to conclude wrongly
that ξ causes η increases ; on the opposite, when U mainly correlates with η,
the risk to conclude wrongly that η causes ξ increases. However, the impact of
the correlation of U is strongly reduced when U is symmetrical uniform (plots
on the left) compared with an asymmetrical chi-square U (df = 1) (plots on
the right). Fortunately, the problem of the distribution and correlations of U
seems possible to overcome: looking at the dCor p-value method, the number
of FP never exceeds 60, even when a very strong correlation of 0.875 between a
chi-square U (df = 1) and η has been specified.

The last results seem to favour the method based of differences of dCor’s p-
values under the assumption of an influent latent confounder. However, a deeper
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Other confounders

X1 X2 X3 Y1 Y2 Y3

𝜀𝑋1 𝜀𝑋2 𝜀𝑋3 𝜀𝑌1 𝜀𝑌2 𝜀𝑌3

𝜉 𝜂

0.7 0.70.8 0.9
0.8 0.9

0.7𝜀𝜉

𝑈

0.7

Model 0: 49% of the variability of 𝜉 explained by U

𝜀𝜉 follows a uniform distribution 

𝜀𝜂 follows a random gaussian

distribution
𝜀𝑋1, 𝜀𝑋2, 𝜀𝑋3, 𝜀𝑌1, 𝜀𝑌2, 𝜀𝑌3 follow 
each a random gaussian distribution

𝜀𝜂

𝜉 𝜂

0.875
𝜀𝜉

𝑈
0.56 𝜀𝜂

𝜉 𝜂

0.8
𝜀𝜉

𝑈
0.6125 𝜀𝜂

𝜉 𝜂

0.8
𝜀𝜉

𝑈
0.6125 𝜀𝜂

𝜉 𝜂

0.875
𝜀𝜉

𝑈
0.56 𝜀𝜂

Model 0a: 76.5625% of the variability of 𝜉 explained by U

Model 0b: 64% of the variability of 𝜉 explained by U

Model 0c: 37.51563% of the variability of 𝜉 explained by U

Model 0d: 31.36% of the variability of 𝜉 explained by U

Fig. 3. In order to study the impact of the correlations of the confounder, simulations
rely on variations of Model 0. While the population level’s correlation between ξ and η
is kept constant and equal to an arbitrary set value of 0.49, the confounder U is made
more correlated with ξ in Models 0a and 0b and more correlated with η in Models 0c
and 0d. In Models 0a, 0b, 0c, 0d, the measurement model (same as in Model 0) is not
displayed to save space.

look at the results from extreme Models 0a and 0d with a chi-square U , reveals
that for the variant using differences of HSIC’s p-values, despite of the very high
number of FP, the median of differences scores (-4.77e-3 for simulations based
on Model 0a ; 2.14e-2 for simulations based on Model 0d) is not far from the
expected 0. So, methods based on differences of p-values might have a small
recurrent bias due to the presence of a (very) asymmetric, strongly correlated U
with either ξ or η. Using difference of dCor’s p-values, this bias can be hidden
due to the random bootstrapped estimation of each p-value.

6 Conclusions and future directions

In this paper, we propose LC, an algorithm for causal inference in a pair of la-
tent variables for confirmatory analysis. In this specific context, LC appears to be
better suited than classical DDA to differentiate causation and confounder pat-
terns from data. The resulting recommendation is then to enrich DDA analysis
with bootstrapped differences of independence statistics (possibly also outside
the context of latent variables).

Directions for LC improvement may also be considered. For instance, promis-
ing research directions to extend the current work are:

– Considering alternative ways to compute factors scores. There are
indeed alternatives to PCAs to represent latent ξ and η.
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Fig. 4. Kinds of type I errors (FP) for each variant to measure dependence as a function
of the distribution and the correlations of the latent confounder U (see Model 0 and
variants 0a, 0b, 0c, 0d). Theoretical Pearson’s correlation between ξ and η at the
population level is always set equal to 0.49 in our simulation; sample size = 500, 1000
simulated datasets for each ten couples (5 models × 2 distributions of confounder)
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– Inclusion of an additional parameter allowing the user of LC to
round to 0 each absolute difference of HSIC’s p-values below a
given specified threshold. Whereas the variant based on differences of
HSIC’s gamma-approximated p-values gives some very good results, differ-
ences of bootstrap approximated dCor’s p-values show more robustness in
the presence of some specific latent confounders. However, about HSIC’s
gamma-approximated p-values, we remark that wrong conclusions in the
robustness analysis come with a small persistent bias in the difference of
p-values. So, rounding to 0 the very small observed differences in HSIC’s
gamma approximated p-value could improve its robustness.

– Relaxing some assumptions of LC and comparison with other al-
gorithms. For instance, relaxing some assumptions, LC could be compared
with parts of Cai et al. (2019)’s method. More widely speaking, future works
should study the performances of LC under relaxed assumptions.

– Manipulation of other parameters and additional comparisons us-
ing other models. For instances, in our models, some distributions could
be changed and other models could be considered. For instance, whereas
Model 0 and Model 1 differed by the causal pattern and by the marginal dis-
tributions assigned to latent ξ and η respectively, an alternative for Model 0
would be to set exactly the same distributions for ξ and η than in Model 1
but with a specified theoretical correlation of 0. Furthermore, other models
should also include confounder and causation together.

– Presence of an observed confounder. Corrections in each bootstrapped
dataset could be included in LC to increase the accuracy.

Last but not least, future work should also test LC on real data as benchmark.
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Abstract. Analogies are common part of human life; our ability to han-
dle them is critical in problem solving, humor, metaphors and argumen-
tation. This paper introduces a method to solve string-based (symbolic)
analogies based on hybrid inferential process integrating Structural Infor-
mation Theory—a framework used to predict phenomena of perceptual
organization—with some metric-based processing. Results are discussed
against two empirical experiments, one of which conducted along this
work, together with the development of a Python version of the SIT
encoding algorithm PISA.

Keywords: Analogical reasoning · Symbolic Analogies · Compression ·
Structural Information Theory · Complexity

1 Introduction

Analogies are common part of human life; our ability to handle them is critical
in problem solving, humor, metaphors and argumentation [8]. In psychology,
analogy is seen as the process of understanding new information by means of
structural similarities with previously acquired information [10], and analogical
reasoning is one of the predominantly measured abilities on IQ tests. Because of
their importance to cognition, analogies have interested researchers in the field
of artificial intelligence. Systems for the computation of analogies have been
created since the ’60s for many different purposes such as solving puzzles based
on objects in images [3], obtaining information by inference [9], understanding
the development in analogical reasoning in children [16], or even as support in
suggesting specialized care for patients with dementia [21]. Recent contributions
in natural language processing [14] have suggested that analogical inference can
be directly performed as vector operations on word vectors (e.g. Paris ≈ France

+ Berlin − Germany). However, even if some machine learning methods have
proven to be unexpectedly good at reproducing some of these inferences, the
overall results are not yet conclusive [18]. The centrality of analogies in human
reasoning motivates to continue the effort to find a better understanding of their
underlying mechanisms.

The aim of this paper is to offer an alternative solution to string-based (or
symbolic) analogies as those proposed by Hofstadter [8]. The contribution is
a hybrid inferential process integrating Structural Information Theory (SIT),
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introduced to predict phenomena of perceptual organization, with some metric-
based processing depending on the atomic components of the input. Thanks
to an anonymous reviewer we discovered that such an application of SIT has
been explored before [1], with a investigation on the algebraic properties of SIT
extended with domain-dependent operators (e.g. succ to produce consecutive
symbols). However, that work was presented before the creation of the minimal
encoding algorithm PISA used in the present research to conduct our exper-
iments. Even if preliminary, the results of the method we propose go beyond
the state of art both in terms of the types of analogy it can deal with and its
speed. Additionally, we report on the development of a Python version of the
SIT encoding algorithm PISA, modified to consider various methods to compute
(descriptive) complexity. The code used for this work is publicly available.1

The paper proceeds as follows: in the remainder of this section, Hofstadter’s
analogies and Structural Information Theory are briefly introduced. Section 2
outlines the analogy solving algorithm, and presents in detail the different com-
ponents. Section 3 briefly discusses the Python implementation of PISA. In sec-
tion 4, the algorithm is evaluated on two datasets, and its performance is com-
pared to that of Metacat. The paper ends with a discussion and a conclusion.

1.1 Hofstadter’s Analogies

Schematically, an analogy can often be expressed as “A is to B what C is to
D” (also known as proportional analogy). In order to model and perform simple
but relevant experiments on analogical reasoning, Douglas Hofstadter proposed
a micro-world for analogy-making at the end of the ’80s [15]. In this microworld,
the objects used for the analogies are strings of letters. An example of such an
analogy is:

ABC:ABD::BCD:?

which should be read as: “ABC is to ABD like BCD is to ?”. The answer
commonly given by respondents to this test is BCE.

In order to predict human answers, Hofstadter created a computer program
called Copycat [15]. To complete a given analogy, the program works with
“agents”, which gradually build up structures representing the understanding
of the problem, eventually reaching a solution. Later the Copycat program was
improved to Metacat [13], which adds a memory, allowing the program to pre-
vent itself from performing actions it has previously tried. Metacat, which was
last updated in 20162, represents plausibly the state of the art of algorithms
available for this problem.

1.2 Structural Information Theory

Structural Information Theory, or SIT, is a theory about perception with roots
in Gestalt psychology. Central to SIT is the simplicity principle, in practice a

1http://github.com/GeertenRijsdijk/SIT_analogies
2http://science.slc.edu/~jmarshall/metacat/
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Fig. 1. Outline of the process used to answer an analogy of the form A:B::C:?.

formalization of Occam’s razor: the simplest explanation for data is likely to
be the correct one [11]. SIT has been empirically validated in several cognitive
experiments with human participants [11,6].

SIT proposes to map the application of the simplicity principle to the Minimal
Encoding Problem using the SIT language: given a string, use regularities to find
an encoding with as little complexity as possible [11]. Such encoding can also
be seen as a compression, since it may greatly decrease the amount of memory
needed to store strings. There are three regularities/operators considered in the
SIT coding language: iteration (I-form), symmetry (S-form) and alternation (A-
form). They are defined in the following way:

I-form: n ∗ (ȳ) ⇒ yyy...y (n times, n ≥ 2)
S-form: S[(x̄0)(x̄1)...(x̄n), (p̄)] ⇒ x0x1...xnpxn...x1x0
S-form: S[(x̄0)(x̄1)...(x̄n)] ⇒ x0x1...xnxn...x1x0
A-form: <(ȳ)>/<(x̄0)(x̄1)...(x̄n)>⇒ yx0yx1...yxn
A-form: <(x̄0)(x̄1)...(x̄n)>/<(ȳ)>⇒ x0yx1...yxny

(The p in a S-form is an optional element, called pivot.) These regularities have
been proven to be the only ones which are holographic and transparent [5]. Holo-
graphic means invariant under growth, e.g. a repetition of n symbols can have
that same symbol added to it forever, and will remain a repetition. Transparent
means that the arguments of a regularity occur linearly in the original string
it encodes. With alternations, the arguments can occur non-consecutively, they
still occur in the same linear order.

2 Analogy Solving

Analogies rely on a perceived underlying structures (see e.g. Structural Mapping
Theory [4]). Both Copycat [15] and Metacat [13] are based on the idea that
there are structures on one side of the analogy that need to be replicated on the
other side. Their “agents” are functionally meant to identify the structures to
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be mapped. At functional level, however, what these agents do is nothing else
than compressing the symbolic input, and this means that other compressors
may work as well.

Figure 1 outlines the higher-level process that was followed to produce an
analogical inference. In an analogy of form A:B::C:?, it is expected that there
exists a certain structure in the left-hand side A:B, which can be extracted
by means of some compression method. By applying this same structure to
the partially available right-hand side C, decompressing the resulting code and
taking away the part C, a possible answer to the analogy can be found.

2.1 Structural compression

The SIT encoding defines a way—empirically validated on perceptual experiments—
to compress strings and is therefore a plausible candidate for describing regulari-
ties emerging from the input. Indeed, handling strings—here seen as ordered lists
of characters, not as words from some language—seems to be based primarily
on perceptual mechanisms rather than on semantics.

Applying SIT on analogical inference, we decided to extract the structure of
A:B focusing on the concatenated string A+B. The idea of compressing A and B
together, rather than separately, is inspired by the technique used in the famous
paper by Li and Vitanji on the Similarity Metric [12], in which concatenations
a.o. of DNA-sequences of two species were compressed to find a measure of their
similarity. In our case, we used for compression the PISA algorithm (Parameter
load plus ISA-rules) [7], a minimal coding algorithm proposed specifically for SIT
[7]. For example, in the problem ABC:ABD::IJK:?, the minimal code (or com-
pression) of the concatenated left-hand side ABC:ABD would be S[(AB), (C)]D
or <(AB)><(C)(D)>. PISA is currently the most optimized algorithm for per-
forming this task, being only weakly exponential. Along with this work, a Python
implementation of this algorithm is presented.

2.2 Generating symbols from symbols

To apply the structure extracted from the left-hand side of the analogy (namely
from A+B) to the right-hand side (C+?), this structure needs to be defined
only as a function of symbols in A, as only the first part of the right hand is
known. The symbols in B need to be generated from the symbols in A, and
for this some invertible function capturing an adequate relationship between
the atomic symbols is needed. The SIT coding language cannot do this; the
only relationship this language considers is the identity relationship: denoting
an atomic component of perception with a or z is completely arbitrary; the only
assumption is that all a or z map to the same type of atomic component.

In contrast, Hofstadter’s analogies seem to rely on some metrical information.
For instance, d is the most natural answer to the analogy a:b::c:?, obtained by
contrasting the b and a (as objects in an alphabet) and applying the output
of this operation on c. The role of contrast in concept construction, similarity
and description generation is indeed central [2,20]. For alphabetic characters as
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in Hofstadter’s analogies, contrast between symbols can be simply defined as a
directional distance between the positions of those symbols in the alphabet. So,
for example, the distance between b and a is 1, and the distance between a and
e is −4. This allow us to rewrite symbols in B as one of the symbol in A and a
directional distance. A challenge that arises with this approach is which symbol
the distance should be calculated from. We attempted multiple approaches to this
problem, some of which were more useful in different situations than others.

Previous symbol strategy The simplest way of deciding which symbol to calculate
distance from is to choose the previous symbol. For example, in the analogy
a:bcd::i:?, the left part abcd can be described as a($ + 1)($ + 1)($ + 1), where
$ refers here to the last symbol used in the code. This same structure can be
applied to obtain the plausible (see section 4) right-hand side i:jkl.

Last new symbol strategy There are however analogies where this approach fails.
Take the analogy aba:aca::ada:?, in which abaaca gets encoded as S[(a), (b)]
S[(a), (c)]. When distances are applied, the code becomes S[(a), (b)] S[(a), (($ +
2))]. Now, when the symbol b is substituted by the symbol d, the decompressed
code becomes adaaca, resulting in solution aca, whereas aea is a much more
plausible answer. An approach solving this issue is choosing the last new symbol
in the organization extracted using SIT. In the previous example, the last new
symbol is b, the mapping would then result in S[(a), (b)] S[(a), (($$+1))], where
$$ is the last new symbol used in the organization. Substituting b with d would
result in S[(a), (d)] S[(a), (($$ + 1))], decompressing into the expected adaaea.

Same position strategy These approaches do not use the actual position of sym-
bols in the input string, but this does seem to play a role at times. Consider
for instance ae:bd::cc:?. Here, a plausible answer would be db, where the change
applied to the string is an increase by 1 for the first element, and a decrease by
1 for the second. In a case like this, a position-based approach would be useful,
resulting in code ae(a+1)(e−1) or ae($$$+1)($$$−1), where $$$ is the object
in A in the same position of the object in B. However, this approach cannot be
used when parts A, B and C of the analogy have different lengths.

2.3 Symbol Substitution

Once the compression of A+B has been defined using only symbols present in
A, a substitution (or replacement) of the symbols in A with the symbols in C
can be performed. In order to do so, A and C need to be represented in ways
that allow the mapping of their components. Here too, different strategies have
been tried, selecting the best depending on the case.

Representation as Strings The simplest way to represent A and C is in their
input form: strings, i.e. ordered lists of characters, in which each symbol counts
as one element. However, there are cases in which this method is not applicable,
as for instance when A and C do not share the same length.
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Representation by Compression The number of elements in the representation
can be reduced by compressing the string and seeing it as a list of symbols and
highest level operators. For example, ijjkkk can be compressed into i2∗(j)3∗(k),
which is then split into i, 2∗(j) and 3∗(k). When a highest level operator has been
used to replace a symbol, this operator itself will count as one symbol for the
purposes of calculating new symbols from distances. If a distance was calculated
from a symbol that has since been replaced by an operator, the entire operator
will be carried over as the new element, and each individual symbol in this
operator is increased by the distance. Consider the analogy abc:abd::ijjkkk:?:

– structure of A+B: <(ab)>/<(c)(($ + 1))>
– structure of C: i 2 ∗ (j) 3 ∗ (k)
– substutition: (a→i), (b→2 ∗ (j)), (c→3 ∗ (k))
– structure of C+D: <(i2 ∗ (j))>/<(3 ∗ (k))(($ + 1))>
– distances removed: <(i2 ∗ (j))>/<(3 ∗ (k))(3 ∗ (l))>
– decompression: ijjkkkijjlll
– result D: ijjlll

Representation by Chunking Alternatively, A and C can be represented in terms
of chunkings, meaning divisions of the concatenated input symbol strings into
chunks. These chunks can then be replaced as if they concerned one element.
For example, abcd could be chunked into [ab, cd], [a, bc, d], [a, b, c, d], and so on.
For A, the chunkings are derived from the compression of A+B, e.g.:

– [a, b, c] is a chunking of abc in the compression S[(a)(b), (c)]c.
– [ab, c] is a chunking of abc in the compression ab2 ∗ (c)($ + 1)($ + 1).
– [ab, c] is a chunking of abc in the compression <(ab)>/<(c)(($ + 1))>.
– [abc] is a chunking of abc in the compression 2 ∗ (abc).

For C, there is no pre-existing structure present that determines how it should
be chunked. However, we considered sound to chunk C in such a way that it
best corresponds to the chunking of A.

We call the process of creating a chunking of C as similar as possible to a
chunking of A chunking-element matching, and works as follows: a list is cre-
ated for the number of symbols in each element in the chunking of A. (e.g.
[a, bc, def ] results in [1, 2, 3]). Next, if the sum of the numbers does not equal
the number of symbols in C, as a simple heuristic, the largest number in this
list is increased/decreased. Now, this list of numbers can be used to split C into
chunks, which can be used to substitute the original elements of the chunking
of A. The following example shows how this chunking matching is used to solve
an analogy abc:abd::ijklm:?

– structure of A+B: <(ab)>/<(c)(($ + 1))>
– chunking of A in A+B: [ab, c]
– lengths of chunking elements of A: [2, 1]
– matching chunking lengths of C: [4, 1]
– chunking of C: [ijkl,m]
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– substitution: (ab→ijkl), (c→m)
– structure of C+D: <(ijkl)>/<(m)(($ + 1))>
– distances removed: <(ijkl)>/<(m)(n)>
– decompression: ijklmijkln
– result D: ijkln

Representation by Consecutive Chunking A special type of chunking is a consec-
utive chunking. A chunking is consecutive if all elements of the chunking contain
exactly one symbol; the elements of the chunking together form all arguments
of a single operator. For instance, [a, b, c] is a consecutive chunking of abc in
the code <(a)(b)(c)>/<(d)>, and [a, b, c] is a consecutive chunking of abc in the
code S[(a)(b), (c)]. Consecutive chunkings can be substituted in a special way:
instead of replacing individual symbols or elements, the entire chunking can be
replaced by a new chunking. The new chunking has one element for every sym-
bol in C. When this consecutive chunking is applied, the entire argument string
forming A is replaced with this new chunking (with the corresponding number
of parentheses per element). For instance in abc:cba::ijklm:?:

– structure of A+B: S[(a)(b)(c)]
– consecutive chunking of A in A+B: [a, b, c]
– consecutive chunking of C: [i, j, k, l,m]
– substitution: ([(a), (b), (c)]→[(i), (j), (k), (l), (m)])
– structure of C+D: S[(i)(j)(k)(l)(m)]
– decompression: ijklmmlkji
– result D: mlkji

2.4 Structure in Parameters

Consider the analogy aaabb:aabbb::eeeeef :?. One way to look at it is that the
analogy simply swaps the number of times the first symbol occurs with the
number of times the second symbol occurs. However, PISA assigns to A+B the
structure 3 ∗ (a)S[2 ∗ ((b))(a)]b, which does not seem to capture this intuition,
as there is no symbol substitution that results in the expected answer efffff .
The core of this analogy problem does not lie in the structure of the symbols,
but in the structure of the structure. By looking at the structure as a series
of iterations, this becomes clear; in 3 ∗ (a)2 ∗ (b)2 ∗ (a)3 ∗ (b), the parameters
of the iterations form a symmetry, namely S[(3)(2)]. It is this symmetry that
forms a plausible basis for solving this analogy. The function written to apply
this strategy is separated from the rest of the algorithm. It encodes A+B as a
sequence of iterations. Next, the parameters of these iterations are compressed,
distances are added and symbol substitution is performed in essentially the same
way as described before. This results in new parameters which, combined with
symbol substitution on the actual symbols, can produce an answer to the analogy.

However, problems of this type can easily become more complex. When the
parameters of a structure can have a structure, the parameters of that struc-
ture could also have a structure, which could again have parameters with some
structure. With larger codes, this ‘parameter depth’ could become very high.
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Algorithm 1: PISA-based compressor

1 Function compress pisa(graph)
2 new hyperstrings = []
3 for hyperstring h in graph do
4 Q = QUIS(h)
5 Create and encode S-graphs of h using Q
6 for w in h.nodes[1 ... N] do
7 Create and encode A-graphs of h using Q, up to node w
8 for v in h.nodes[w ... 0] do
9 find best possible code for v→w

10 add best code to h as edge v→w
11 for u in h.nodes[0 ... v] do
12 if c(u, w) > c(u,v) + c(v,w) then
13 new code = u→v + v→w
14 add new code to h as edge u→w

15 add h to new hyperstrings;

16 return combine(new hyperstrings);

Furthermore, relationships between parameters at different ‘depths’ are also
possible. Take for instance the analogy abc:aaabbbccc::abcd:. The structure of the
parameters could be written as 3∗(1)3∗(3) (neglecting the internal relationships
between symbols). To get to a plausible answer aaaabbbbccccdddd, there would
need to be a relationship between the two 3s out of brackets, and the 3 inside
the brackets, which are at different parameter depths. In short, structure in
parameters can be very complex. In this work, it has only been explored at a
surface level. Other configurations are left to future work.

2.5 Inversion trick

When A:B::C:? does not have a structure that is easily worked with, it is also
possible to rearrange the analogy to hopefully obtain better answers. This rear-
rangement is analogous to this numeric equivalence: ab= c

d ⇔ a
c= b

d . In our case,
while the two forms of analogies might often result in the same answers, one
of the two forms might be more solvable using the approach proposed here. An
example of this is the analogy abac:adae::baca:?. A+B has a structure of form
<(a)>/<(.)>, while the left side has a structure of form <(.)>/<(a)>. This
change in structure is a problem for our algorithm, since it tries to apply the
same structure to C+D. Changing the analogy to abac:baca::adae:? results in the
structure S[(a)(bac)], which is a structure the solver can deal with more easily.

3 Python implementation of PISA

A string of length N can be represented by up to a superexponential O(2Nlog(N))
number of codes [7]. To find the one with the lowest complexity, one could
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generate each possible code and compare all of these. For long strings this can
be very time consuming. The PISA (Parameter load plus ISA-rules) algorithm
was designed to efficiently find the minimal coding of a string in the SIT coding
language [7]. PISA is significantly faster than a method which generates all
possible encodings, being only weakly exponential. A dissection of the PISA
algorithm can be found in chapter 5 of Simplicity in Vision [6]. Here, we will
briefly discuss our re-implementation in Python.

The PISA-based compressor created for this research is written in an object-
oriented fashion (the original version3, being in C, does not support classes),
with a central hyperstring class. The general outline of the algorithm written for
this research can be seen in Algorithm 1. The algorithm processes each hyper-
string in the input graph separately (line 3). In line 4, the QUIS algorithm [6]
is called for each hyperstring to create an intermediate structure to more effi-
cient representations. The output matrix is indeed used in line 5 and 7 to create
S- and A-graphs, representing symmetries and alternations present in the hy-
perstring. These graphs are themselves also encoded using this function. Lines
6 and 8 loop over every combination of two nodes (v, w) in the hyperstring.
For each pair, lines 9 looks for the best possible code for the substring between
these two nodes. Using the complexity metric, this best code is chosen from: the
current code; the best possible iteration, if any; the best possible symmetry, if
any, calculated using the S-graph that has a pivot halfway in between the two
nodes; the best possible alternation, if any, calculated for every A-graph. Once
the best code has been selected, line 10 adds an edge representing the code to
the hyperstring. Next, line 11 iterates over every node that comes before node
v. Line 12 looks at the complexities of the codes between u, v and w. If the com-
plexity of the edge u→w can be reduced by creating a combination of the codes
in edges u→v and v→w, this is done. At the end of the algorithm, all encoded
hyperstrings are recombined into a new graph. This graph is then returned.

Given a hyperstring that represents a mere string, the same hyperstring is
returned with added edges that represent the best code for each substring, and
the code of the edge connecting the first and last node of the hyperstring will be
the best encoding of the entire string.

3.1 Configurable Complexity Metric

Besides reproducibility, a major reason why we reimplemented PISA was to
gain control over its components, in particular the way in which complexity is
measured. The original PISA relies only on one metric, the Inew load [7]. We con-
sidered instead as basis the more general principles of Kolmogorov complexity
[19]. At a more fundamental level, SIT has been conceived for structural infor-
mation, but analogies require also to look at some metrical information. The
complexity metric considered here calculates complexity by taking the number
of symbols used for the code and adding, for each operator in the code, a certain
value. This value might differ across operators, and can be adjusted later with

3https://ppw.kuleuven.be/apps/petervanderhelm/doc/pisa.html
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empirical data to find the values for optimal performance of the analogy solv-
ing algorithm. Indeed, the Inew load does not allow for adjusting of parameters
for aligning to human answers and seems somewhat unintuitive, assigning for
example the same complexity to the codes a and 9 ∗ (a).

3.2 Other differences with PISA

This implementation relies heavily on the theoretical concepts of hyperstrings, S-
graphs and A-graphs as PISA does. However, in some points we found the exact
working of PISA to be unclear, and that meant that we had to fill in the blanks.
The following list outlines the major differences between the two algorithms.

– The explanation of PISA in [6] mentions ‘updating its database of S- and
A-graphs’ at the end of the first for loop. It is however not clear how this
update is done. In the proposed compressor the graphs are not updated, but
recreated each time.

– PISA updates the A-graphs at the end of the first for loop, while this com-
pressor recreates the A-graphs at the start of the first for loop. A small
exception to this is present in the code; at the end of each v loop, the al-
gorithm does update the repeats of right a-graphs with the encodings of
the v→w edge. This is not necessary for left a-graphs due to the algorithm
encoding the string left to right.

– PISA updates the S-graphs at the end of the first for loop, while this com-
pressor creates the S-graphs before the first for loop.

– PISA always returns the one code with the lowest complexity, while this
compressor returns a Graph object. In this object, the edge connecting the
first and last nodes also represents the edge with the lowest complexity,
but other paths represent other codes, which consist of optimally encoded
substrings which together form the whole string. This enables us to consider
sub-optimal codes as well.

4 Results

To evaluate the proposed analogy solving algorithm, the answers generated by
it will be compared against two sets of human answers obtained in distinct
experiments. Furthermore, the answers generated by the proposed solver will
also be compared to the answers generated by Metacat [13].

4.1 Murena’s dataset

Table 1 reports data published by Murena et. al. [17] on human answers for
analogy tests. In their experiment, 68 participants were asked to solve analogies
following the template ABC:ABD::X:?. The left-hand side of the analogy re-
mained the same during the experiment, but the X changed in every test. For
each X, the data shows the two most common answers given by participants,
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Given X Solutions Selected by Ps PM Given X Solutions Selected by Ps PM

IJK IJL 93% 1 1 BCD BCE 81% 2 1
IJD 2.9% - - BDE 5.9% 1 -

BCA BCB 49% 3 2 IJJKKK IJJLLL 40% 1 2
BDA 43% 1 1 IJJKKL 25% 2 1

AABABC AABABD 74% 1 1 XYZ XYA 85% 1 -
AACABD 12% - - IJD 4.4% - -

IJKLM IJKLN 62% 1 1 RSSTTT RSSUUU 41% 1 1
IJLLM 15% - - RSSTTU 31% 2 -

KJI KJJ 37% 1 1 MRRJJJ MRRJJK 28% 2 1
LJI 32% - 2 MRRKKK 19% 1 2

ACE ACF 63% 1 1
ACG 8.9% - -

Table 1. Human answers to analogies of form ABC:ABD::X:? from the Murena
dataset 1, along with at which position the same answers were given by the solving
algorithm proposed in this project (Ps) and Metacat (PM ).

as well as the percentage of participants that chose that answer.4 The last two
columns in the Table 1 show the performances of the analogy solving algorithm
proposed in this project (Ps) and Metacat (PM ) ins terms of the position in which
that answer was generated (e.g. a 1 means it was the best answer, 2 means it was
the second best, etc.). A dash indicates that the answer was not generated at
all. As for speed, the lack of a built-in way to measure the time Metacat uses for
compression made it difficult to perform an empirical speed comparison. How-
ever, when working with Metacat, it was clear that this method is much slower
than the solver implemented here, sometimes taking more than 10 minutes to
generate a single answer. For this reason, only two answers per question were
generated using Metacat.

The table shows that, for this dataset, the most common answer to the prob-
lem is always generated by our solver. Furthermore, the top answer generated
by the solver is always one of the two most common answers by the participants.
Both of these observations are also true for Metacat, with the exception of the
problem XY Z, for which it produced none of the answers given by participants.
However, there are also answers given by human participants that the solvers did
not generate. Overall, the most common human answer matched the top answer
8/11 times (72.7%), both for our solver and Metacat. The most common partic-
ipant answer was in the top 2 generated answers 10/11 times (90.9%) for both
algorithms. Answers given by participants were generated 16/22 times (72.7%)
for our solver and 14/22 times (63.7%) for Metacat.

4.2 Our Dataset

The Murena testset is quite small and the analogies it presents follow all the
same template. For this reason, a second testset was constructed on purpose for
this work, consisting of 20 more complex analogies. 35 participants (18 male,

4In the original experiments some questions were repeated to see the influence of
having previously faced similar problems. Since the solving algorithm in this project
runs independently of previous answers, repeated questions were omitted here.
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Given problem Solutions Selected by Ps PM

ABA:ACA::ADA:? AEA 97.1% 1 1
AFA 2.9% - -

ABAC:ADAE::BACA:? DAEA 60% 2 -
BCCC 28.6% 21 -

AE:BD::CC:? DB 68.5% 3 1
CC 17.1% - 2

ABBB:AAAB::IIIJJ:? IIJJJ 57.1% 1 -
JJIII 14,3% - -

ABC:CBA::MLKJI:? IJKLM 88.6% 1 1
- - - -

ABCB:ABCB::Q:? Q 100.0% 1 -
- - - -

ABC:BAC::IJKL:? JIKL 54.3% - -
KIJL 14.3% 2 -

ABACA:BC::BACAD:? AA 57.1% 1 -
BCD 31.4% - -

AB:ABC::IJKL:? IJKLM 85.7% 1 1
IJKLMN 11.4% - -

ABC:ABBACCC::FED:? FEEFDDD 91.4% 2 1
- - - -

ABC:BBC::IKM:? JKM 57.1% 7 -
KKM 37.1% 2 -

ABAC:ACAB::DEFG:? DGFE 68.6% 2 -
FGDE 14.3% 1 -

ABC:ABD::CBA:? DBA 51.4% 1 2
CBB 45.7% 2 1

ABAC:ADAE::FBFC:? FDFE 94.3% 1 -
FDFA 2.9% - -

ABCD:CDAB::IJKLMN:? LMNIJK 80.0% - -
- - - -

ABC:AAABBBCCC::ABCD:? AAABBBCCCDDD 74.3% 1 1
AAAABBBBCCCCDDDD 17.1% - -

ABC:ABBCCC::ABCD:? ABBCCCDDDD 85.7% - -
ABBCCCDDD 8.6% 1 -

ABBCCC:DDDEEF::AAABBC:? DEEFFF 77.1% 1 -
DCCDDF 8.6% - -

A:AA::AAA:? AAAAAA 62.8% 1 -
AAAA 25.7% 2 1

ABBA:BAAB::IJKL:? JILK 71.4% - -
JIJM 11.4% 5 -

Table 2. Human answers to analogies collected in this project experiment, along with
at which position the same answers were given by the solving algorithm proposed in
this project and Metacat.

17 female, average age 26.8) were asked to solve the analogies in the testset,
the results of which can be seen in Table 2. As before, the table shows the top
two answers given by participants, as well as the percentage of participants that
gave each answer. In some cases, only the top answer is given. This is done
when either all participants gave the same answer, or when there were multiple
answers tied for second which all had only one participant.

In this testset, the most common answer given by participants was generated
by the solver 16/20 times (80%), whereas it was generated by Metacat only 7/20
times (35%). The top answer given by the solver was in the top two participant
answers 13/20 times (65%), whereas the top answer generated by Metacat was in
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the top two participant answers 8/20 times (40%). The most common participant
answer matched the top generated 10/20 times (50%) for the solver, and 6/20
times (30%) for Metacat.

4.3 Complexity values

The complexity values or weights of iteration, symmetry and alternation opera-
tors were chosen to optimize the results of the solver on the two testsets. These
variables were tested with values ranging from 0.8 to 1.2, with steps of 0.1. Each
possible combination of those values was tested on how highly they ranked the
participant-given answers amongst all answers. Overall, it was found that small
differences in the values often did not change much about the rankings, suggest-
ing that there was not really a risk of overfitting. On a larger scale, the following
requirements seem to yield the best results: the weight of iterations should be less
than 1; of symmetries less than 1; of alternation more than 1. The final weights
chosen were 0.85 for iterations, 0.9 for symmetries and 1.1 for alternation.

5 Discussion

The goal of this project was to use SIT compression as the basis for an analogy
solving algorithm. The analogy solving algorithm has shown promising results on
the test set created by Murena et. al [17]. However, this test set is very limited,
having only 11 questions, each following the same template. The lack of variety
and complexity motivated the creation of a second testset.

When compared to Metacat, our solving algorithm has shown to achieve
similar results on the first testset. This is likely because the questions in this
testset share a similar structure which both solvers seem to be able to deal with.
On the second testset, our solving algorithm achieves drastically better results.
It should, however, be noted that Metacat uses randomness in its procedure
to generate answers. Therefore, different runs of the algorithm on the problem
could result in different, and possibly better, answers. Furthermore, for this
comparison, only the first two answers generated by Metacat were used, but
Metacat can often generate more answers than that. The choice to only consider
the top two answers was made due to time constraints: generating a single answer
using Metacat can, in some cases, take up to 10 minutes, against a few seconds
for our solver.

It is important also to note that problems in the second testset were created
after the implementation of the solving algorithm, and with the capabilities of
this solver in mind. Because of this, for many of the questions it was predictable
beforehand whether the solver would produce intuitive answers. Therefore, the
percentages of correct answers should not weigh heavily in the evaluation of
the algorithm. Instead, the set should be used as a showcase of what types of
analogies the algorithm can and cannot deal with.

Answers of the solver are ranked by the complexities of the codes they orig-
inate from, e.g. answers such as BCCC (28.6%) to ABAC:ADAE::BACA:
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?, DB (68.5%) to AE:BD::CC:?, JKM(57.1%) to ABC:BBC::IKM :? and
JIJM(11.4%) to ABBA:BAAB::IJKL:?. Despite these answers being chosen
by (fairly) significant percentages of the participants, they do not rank highly
amongst the answers generated by the solver. This results hints that there exist
better strategies not adequately taken into account. The reasoning behind these
answers (most likely) relies on applying positional distances in the left-hand side
of the analogy to the right-hand side. The most significant case of this is the
answer BCCC to ABAC:ADAE::BACA:?, which the solver ranks lower than
20 other solutions, despite being picked by over a quarter of the participants.
Future work on this project could look at alternate ways which could, either in
combination with complexity or on their own, rank answers generated by the
solver in a way that corresponds better to human answers.

The answer LMNIJK (80.0%) to ABCD:CDAB::IJKLMN :? might tell
us something the cognitive equivalent of what in this project is called chunking
(section 2.3). It seems that the structure that best corresponds to participants’
interpretation of this problem is S[(ab)(cd)], which essentially represents a swap-
ping of ab and cd in part A to get part B. The same structure in the right-hand
side of the analogy that corresponds to the top answer is S[(ijk)(lmn)]. This
way of symbol substitution corresponds to chunking element matching, described
in section 2.3; whereas the method used in this project tries to keep as many
elements of the chunking as possible at the same length (which results in struc-
tures like S[(ij)(klmn)] or S[(ijkl)(mn)]), the 3-3 division suggests a preference
to maintain the same ratio between the chunking elements.

Finally, other answers that cannot be solved by the algorithm are the ones dis-
cussed in section 2.4, where there are relationships between iteration parameters
at different levels. In the test, such relationships are (most likely) used for an-
swer AAAABBBBCCCCDDDD (17.1%) to problem ABC:AAABBBCCC::
ABCD:?, and answer ABBCCCDDDD (85.7%) to problem ABC:ABBCCC::
ABCD:?. These answers suggest that such relationships are indeed understood
and used by participants, although this begs the question of how complex these
relationships can be before participants will no longer base their answer on them.

6 Future developments

Structural Information Theory has shown itself to be a useful tool for analogy
solving, although it cannot do this on its own. The lack of metrical informa-
tion, or a way to define relationships between symbols, resulted in the need for
a way of defining symbols as distances from other symbols, as well as a way
of choosing which symbol to calculate from. Similarly, the necessity to apply
structure from one part of an analogy to another entailed the need for a method
for symbol substitution. In this work we introduced with some success different
intuitive heuristics/strategies for these two aspects, but a general, unifying the-
ory is needed. Additionally, test data confirms that, sometimes, the structure of
the symbols has structure itself (section 2.4). A unifying theory based on Kol-
mogorov complexity might predict that further depth is considered only if yields
a reduction of complexity, and this is a required focus for future works.
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Abstract. A semantic tableau method, called an argumentation tableau,
that enables the derivation of arguments, is proposed. First, the deriva-
tion of arguments for standard propositional and predicate logic is ad-
dressed. Next, an extension that enables reasoning with defeasible rules
is presented. Finally, reasoning by cases using an argumentation tableau
is discussed.

1 Introduction

The semantic tableau method is used for (automated) reasoning with different
logics such as the standard propositional and predicate logic [5], several modal
logics, description logics, etc. Although a semantic tableau proof can be viewed
as an argument for a claim / conclusion, it is not similar to arguments studied
in argumentation systems; see for instance: [3, 4, 11–15, 18, 19, 21, 25]. This raises
the question whether the semantic tableau method can be used to derive proper
arguments for claims / conclusions.

We will address this question by first investigating a semantic tableau method,
called an argumentation tableau, for the derivation of arguments in standard
propositional and predicate logic. The use of arguments becomes more interest-
ing when dealing with defeasible information. We therefore will investigate next
the derivation of arguments when propositional and predicate logic are extended
with defeasible rules.

Reasoning by cases is a problem for many argumentation systems that use
an underlying language that allows for disjunctive information. Moreover, ap-
proaches that support reasoning by cases, do not agree on how rebutting attacks
should be handled within a case [2, 6, 12, 13, 19]. We also will investigate reason-
ing by cases using an argumentation tableau.

2 Preliminaries

This section presents the notion of an argument that will be used in the discus-
sion of the argumentation tableau that is proposed in this paper.

We assume a standard logic such as propositional or predicate logic. The
language of the logic will be denoted by L. We also assume that the language L
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contains the symbols > denoting true, and ⊥ denoting false. In case of predicate
logic, the set of ground terms is denoted by G.

Since this paper focuses on argumentation, we need a definition of an argu-
ment. Toulmin [23] views an argument as a support for some claim. The support
is grounded in data, and the relation between the data and the claim is the
warrant. Here, we use the following definition.

Definition 1. A couple A = (S, ϕ) is called an argument where ϕ is a proposi-
tion said to be its conclusion, and S is a set said to be its support; its elements
are called supporting elements. It is worthwhile observing here that this definition
is very general and a many couples might be qualified as arguments.

In case of propositional and predicate logic, the support S is a set of propositions
from the language L. Generally, S contains the set of premises used to derive
the supported proposition ϕ. So, S |− ϕ. In special applications, such as Model-
Based Diagnosis, we may restrict S to assumptions about the normal behavior
of components.

We may extend a standard logic with a set of defeasible rules. Defeasible
rules are of the form:

ϕ; ψ

in case of propositional logic, and of the form:

ϕ(x) ; ψ(x)

in case of predicate logic. Here ϕ and ψ are propositions from the language L,
and x is a sequence of free variables. The free variables denote a set of ground
instances of the defeasible rule ϕ(x) ; ψ(x). We do not use the universal quan-
tifier because the rule is not a proposition that belongs to the language L. It
is an additional statement about preferences that need not be valid for every
ground instance.

We use Σ ⊆ L to denote the set of available information and we use D to
denote the set of available rules. Moreover, we use D = {ϕ(t) ; ψ(t) | ϕ(x) ;
ψ(x) ∈ D, t ∈ Gn} to denote the set of ground instances of the defeasible rules
with n free variables in case of predicate logic, and D = D in case of propositional
logic.

Defeasible rules are used in the construction of arguments. Whenever we have
a support S ′ for the antecedent ϕ of a defeasible rule ϕ ; ψ, we can create a
supporting element (S ′, ϕ; ψ), which can be used to support ψ. The arguments
that can be constructed are defined as:

Definition 2. Let Σ ⊆ L be the initial information and let D be a set of de-
feasible rules. An argument A = (S, ψ) with premises Ā, defeasible rules Ã, last

defeasible rules ~A, supported proposition (claim / conclusion) Â, and supporting
propositions Ŝ of Â, is defined as:

– If ψ ∈ Σ, then A = ({ψ}, ψ) is an argument.
Ā = {ψ}. Ã = ∅. Â = ψ. Ŝ = {ψ}.
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– If A1 = (S1, ϕ1), . . . , Ak = (Sk, ϕk) are arguments and {ϕ1, . . . , ϕk} |− ψ,
then A = (S1 ∪ · · · ∪ Sk, ψ).

Ā = Ā1 ∪ · · · ∪ Āk. Ã = Ã1 ∪ · · · ∪ Ãk. ~A = ~A1 ∪ · · · ∪ ~Ak. Â = ψ.
Ŝ = Ŝ1 ∪ · · · ∪ Ŝk.

– If A′ = (S ′, ϕ) is an argument and ϕ ; ψ ∈ D is a defeasible rule, then
A = ({(S ′, ϕ; ψ)}, ψ) is an argument.

Ā = Ā′. Ã = {ϕ; ψ} ∪ Ã′. ~A = {ϕ; ψ}. Â = ψ. Ŝ = {ψ}.

A = (S, ψ) is a minimal argument iff (1) S is a minimal set such that Ŝ |− ψ,
and (2) for every (S ′, α; β) ∈ S, (S ′, α) is a minimal argument.

This abstract representation of arguments is based on the representation of
arguments proposed in [18, 19]. Note that for every argument, there exists a
corresponding minimal argument supporting the same conclusion.

We will use a graphical representation of an argument for human readability.
The argument for an inconsistency:

A = ({({({p ∨ q,¬q}, p; r), ({s}, s; t)}, r ∧ t; u),
({v}, v ; w),¬(u ∧ w)},⊥)

is graphically represented as:

A :

p ∨ q
¬q

∣∣∣∣− p; r

s |− s; t

∣∣∣∣∣∣∣∣
− r ∧ t; u

v |− v ; w
¬(u ∧ w)

∣∣∣∣∣∣∣∣∣∣∣∣

−⊥

Here Â = ⊥, ~A = {r ∧ t ; u, v ; w}, Ã = {p ; r, s ; t, r ∧ t ; u, v ; w},
Ā = {p ∨ q,¬q, s, v,¬(u ∧ w)} and Ŝ = {u,w,¬(u ∧ w)} with A = (S,⊥).

When an argument for an inconsistency is derived1, one of the defeasible
rules is not applicable in the current context. If no defeasible rule is involved in
the argument for the inconsistency, one of the premises is invalid. In both cases
we will use a partial order < on the defeasible rules D and on the information
in Σ to determine the rule and premise that is invalid, respectively. Following
[16–19], we formulate an undercutting argument for the culprit.

Definition 3. Let A = (S,⊥) be an argument for an inconsistency. Moreover,
let < ⊆ (Σ ×Σ) ∪ (D ×D).

– If Ã 6= ∅, defeat the weakest last rule. For every ϕ ; ψ ∈ min<( ~A)
with (S ′, ϕ; ψ) ∈ S, A′ = (S\(S ′, ϕ; ψ),not(ϕ; ψ)) is an undercutting
argument of ϕ; ψ ∈ D.

– If Ã = ∅, defeat the weakest premise. For every σ ∈ min<(Ā), A′ =
(S\σ,not(σ)) is an undercutting argument of σ ∈ Σ.

1 Arguments for inconsistencies cover rebutting attacks.
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The undercutting arguments define an attack relation over the arguments.
An undercutting argument A = (S,not(ϕ; ψ)) attacks every argument A′ for
which ϕ; ψ ∈ Ã′ holds. Moreover, an undercutting argument A = (S,not(σ))
attacks every argument A′ for which σ ∈ Ā′ holds. In both cases, A −→ A′.
We can use one the semantics for argumentation frameworks to determine the
argument extensions; see for instance: [1, 7, 8, 10, 20, 24].

3 Basic Argumentation Tableau

A semantic tableau method is a proof system developed by Beth [5]. In the
modern version of the method, the semantic tableau for propositional and pred-
icate logic is a tree where each node represents a set of propositions. The set of
propositions in a node of the tree is satisfiable if and only if the set of propo-
sition in one of its child nodes is satisfiable. For convenience we will use Γ to
denote a node of the semantic tableau as well as the set of propositions the node
represents.

We are interested in arguments, which are propositions and their supports.
Therefore we introduce an argumentation tableau of which each node Γ is a set
of arguments.

Definition 4. An argumentation tableau T , is a tree of which each node Γ is
of a set of arguments.

The tableau rules of an argumentation tableau are similar to the rules of a
traditional semantic tableau. The only difference is the supports for the propo-
sitions. The tableau rules for propositional logic arguments are:

(S, ϕ ∧ ψ)

(S, ϕ), (S, ψ)

(S, ϕ ∨ ψ)

(S, ϕ) | (S, ψ)

(S, ϕ→ ψ)

(S,¬ϕ) | (S, ψ)

(S, ϕ↔ ψ)

(S, ϕ→ ψ), (S, ψ → ϕ)

(S,¬(ϕ ∨ ψ))

(S,¬ϕ), (S,¬ψ)

(S,¬(ϕ ∧ ψ))

(S,¬ϕ) | (S,¬ψ)

(S,¬(ϕ→ ψ))

(S, ϕ), (S,¬ψ)

(S,¬(ϕ↔ ψ))

(S,¬(ϕ→ ψ)) | (S,¬(ψ → ϕ))

(S,¬¬ϕ)

(S, ϕ)

(S, ϕ), (S ′,¬ϕ)

(S ∪ S ′,⊥)

There are three aspects to note:

– The right rule on the last line specifies the support for the closure of a branch
of the semantic tableau,

– More than one support for the closure of a branch may be derived. Here we
are interested in every support for a branch closure.
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– For an element (S, ϕ) of a tableau node, unlike an argument defined by
Definition 2, Ŝ |− ϕ need not hold.

Four additional tableau rules are used for predicate logic.

(S,∀x ϕ)

(S, ϕ[x/t])

(S,∃x ϕ)

(S, ϕ[x/c])

(S,¬(∀x ϕ))

(S,¬ϕ[x/c])

(S,¬(∃x ϕ))

(S,¬ϕ[x/t])

Here t can be any term that occurs in the current node, and c must be a new
constant not yet occurring the current node of the argumentation tableau. Since
t can be any term, the corresponding rule can be applied more than once for the
same proposition.

If an argumentation tableau closes, we can determine the support(s) for the
closure.

Definition 5. Let an argumentation tableau T with n leaf nodes: Λ1, . . . , Λn.

– The argumentation tableau is closed iff for every leaf Λi there is an argument
(Si,⊥) ∈ Λi.

– A support for a tableau closure is defined as:
S =

⋃n
i=1 Si where (Si,⊥) ∈ Λi.

Note that a leaf of a closed tableau may contain more than one argument of
the form (S ′,⊥). Therefore, there can be multiple supports for the closure of
the tableau. In order to determine every possible (S ′,⊥), the leafs of the closed
tableau must also be saturated. It may be impossible to determine saturated
leafs in case of predicate logic.

Proposition 1. Let L be the language of propositional or predicate logic, let the
Σ ⊆ L, and let T be an argumentation tableau. Then,

1. If S is a support for the closure of the tableau T with root node Γ0 =
{({σ}, σ) | σ ∈ Σ}, then S ⊆ Σ is inconsistent.

2. If S ⊆ Σ is a minimal inconsistent set, then there exists a tableau T ′ which
extends the tableau T and S is a support for the closure of T ′.

Proof. A version of the paper with all proofs can be found at:
https://dke.maastrichtuniversity.nl/nico.roos/bnaic2020proofs.

A standard semantic tableau uses refutation to prove a conclusion. The sup-
port S for a closure of an argumentation tableau can be used for the same
purpose. Since S is inconsistent for any σ ∈ S, S\σ |= ¬σ. Hence, to prove ϕ
and identify a corresponding argument, we add ({¬ϕ},¬ϕ) to the root Γ0 of the
tableau. If the tableau closes and if the support S of an inconsistency contains
¬ϕ, then we can construct an argument (S\¬ϕ,ϕ). To keep track of the propo-
sition we try to refute, we put a question-mark behind the proposition in the
support ({¬ϕ?},¬ϕ). The element ({¬ϕ?},¬ϕ) that we add to the root node, is
called a test.
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Corollary 1. Let Σ ⊆ L be the initial information and let ϕ ∈ L be the proposi-
tion for which we search supporting arguments. Moreover, let S be the support for
a tableau closure of a tableau T with root Γ0 = {({σ}, σ) | σ ∈ Σ}∪({¬ϕ?},¬ϕ).

1. If S is the support for a tableau closure of a tableau T and S contains a
single test ¬ϕ?, then S\¬ϕ? |− ϕ.

2. If S ′ ⊆ Σ is a minimal set such that S ′ |− ϕ, then there exists a tableau T ′

which extends the tableau T and S ′ ∪ {ϕ?} is a support its closure.

It can be beneficial if we can derive multiple conclusions simultaneously. The
argumentation tableau offers this possibility by simply adding several tests to the
root node. After deriving a support S for a tableau closure, we check whether the
support contains multiple tests. If it does, it can be ignored. We are interested in
supports with zero or one test. The latter provides arguments for conclusion of
interest, and the former enables us to handle with inconsistencies in the initial
information. For instance Roos [16, 17] proposes to resolve the inconsistencies
by formulating undercutting arguments for the least preferred propositions in S
given a partial preference order < (which can be empty).

Definition 6. Let S be a support without tests for the tableau closure.
For every σ ∈ min< S, (S\σ,not σ) is an undercutting argument of σ.

Other names that can be found in the literature for this form of undercutting
attack are: premise attack and undermining [15]. The derivation of arguments
for conclusions and undercutting arguments to resolve inconsistencies is related
to [3, 4, 9, 17, 22].

4 Defeasible Rules

The argumentation tableau presented in the previous section enables us to derive
deductive arguments. It does not support arguments containing defeasible rules.
Here we will extend the argumentation tableau in order to derive arguments as
defined in Definition 2.

The support of the argument defined in Definition 2 is a tree consisting
of alternating deductive and defeasible transitions. The root of the tree is the
conclusion / claim supported by the argument. For instance,

A :
p ∨ q
¬q

∣∣∣∣− p; r |− r ; s |− s

The support of the deductive transitions can be determined by the basic ar-
gumentation tableau described in the previous section by adding the antecedent
of a defeasible rule as a test to the root of the argumentation tableau. Since we
do not know which antecedents of defeasible rules will be supported, we add all
of them as tests to the root Γ0.

Next we extend the root of the tableau with the consequent of a defeasible
rule after determining a support for its antecedent from a closed tableau.
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Definition 7. Let T be a tableau with root Γ0. Moreover, let S be the support
for the antecedent ϕ of the rule ϕ ; ψ ∈ D determined by the tableau T where
({¬ϕ?},¬ϕ) ∈ Γ0.

Then we can extend the root Γ0 with the argument ({(S, ϕ; ψ)}, ψ).

To give an illustration, consider the initial information Σ = {p ∨ q,¬q} and the
defeasible rules D = {p ; r, r ; s}. We are interested in an argument for the
conclusion s. We start constructing the tableau shown on the left in Figure 1. The
support for the closure of this tableau is: {p∨ q,¬q,¬p?} implying the argument
({p ∨ q,¬q}, p). We may therefore add the consequence r of the defeasible rule
p ; r with the support {({p ∨ q,¬q}, p ; r)} to the root of the tableau and
continue rewriting the tableau. This results in the tableau shown on the right in
Figure 1.

({p ∨ q}, p ∨ q)
({¬q},¬q)

({¬s?},¬s)
({¬p?},¬p)
({¬r?},¬r)

({p ∨ q}, p)

({p ∨ q,¬p?},⊥)

({p ∨ q}, q)

({p ∨ q,¬q},⊥)

({p ∨ q}, p ∨ q)
({¬q},¬q)

({¬s?},¬s)
({¬p?},¬p)
({¬r?},¬r)

({({p ∨ q,¬q}, p ; r)}, r)

({p ∨ q}, p)

({p ∨ q,¬p?},⊥)

({({p ∨ q,¬q}, p ; r),
¬r?},⊥)

({p ∨ q}, q)

({p ∨ q,¬q},⊥)

({({p ∨ q,¬q}, p ; r),
¬r?},⊥)

Fig. 1. Deriving defeasible arguments 1

The support for the new closure of the tableau shown on the right in Figure 1
is: {({p∨ q,¬q}, p; r),¬r?} implying the argument ({({p∨ q,¬q}, p; r)}, r).
We may therefore add the consequence s of the defeasible rule r ; s with the
support {({({p∨q,¬q}, p; r)}, r ; s)} to the root of the tableau and continue
rewriting the resulting tableau as shown in Figure 2. The support for the closure
of the tableau as shown in Figure 2 is:

{({({p ∨ q,¬q}, p; r)}, r ; s),¬s?}
implying the desired argument

({({({p ∨ q,¬q}, p; r)}, r ; s)}, s)

4.1 Predicate Logic

The construction of an argumentation tableau for predicate logic extended with
defeasible rules is the same as the above described argumentation tableau for
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({p ∨ q}, p ∨ q)
({¬q},¬q)

({¬s?},¬s)
({¬p?},¬p)
({¬r?},¬r)

({({p ∨ q,¬q}, p ; r)}, r)
({({({p ∨ q,¬q}, p ; r)}, r ; s)}, s)

({p ∨ q}, p)

({p ∨ q,¬p?},⊥)

({({p ∨ q,¬q}, p ; r),¬r?},⊥)

({({({p ∨ q,¬q}, p ; r)}, r ; s),¬s?},⊥)

({p ∨ q}, q)

({p ∨ q,¬q},⊥)

({({p ∨ q,¬q}, p ; r),¬r?},⊥)

({({({p ∨ q,¬q}, p ; r)}, r ; s),¬s?},⊥)

Fig. 2. Deriving defeasible arguments 2

propositional logic with defeasible rules. We should in principle add every ground
instance of the negated antecedent of each rule ϕ(t) ; ψ(t) ∈ D as a test to the
root of the tableau. That is, we should add the set of tests

{({¬ϕ(t)?},¬ϕ(t)) | ϕ(t) ; ψ(t) ∈ D, t ∈ G}

to the root of the tableau. If functions are used, this set of tests will be infinite,
and therefore adding all ground instances is not practically feasible. Instead,
we may limit ourselves to the ground instances that are present in the current
tableau. So, while expanding the tableau, more ground instance may be added.

4.2 Correctness and Completeness

We can proof that the argumentation tableau determines exactly the same set of
arguments as those defined in Definition 2. First, we prove a proposition similar
to Proposition 1

Proposition 2. Let L be the language of propositional or predicate logic, let the
Σ ⊆ L, let D be a set of defeasible rules over L, and let Γ0 = {(Si, ψi)}ni=1 be
the root node of the tableau T . Then,

1. If S is a support for the closure of the tableau T , then Ŝ ⊆ Σ is inconsistent.
2. If Ŝ ⊆ Σ is a minimal inconsistent set, then S is a support for the closure

of the tableau T .

Theorem 1. If A is a minimal argument according to Definition 2, then A can
be derived by an argumentation tableau. If the argument A can be derived by an
argumentation tableau, then A is an argument according to Definition 2.
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5 Reasoning by Cases

Reasoning by cases addresses the derivation of conclusions in the context of
uncertainty. Uncertainty described by disjunctions results in multiple cases. Each
case is a possible description of the world. If the same conclusion is derived in
each case, then that conclusion will certainly hold in the case describing the
world. The use of defeasible rules to derive new conclusions in a case should
make no difference despite that the arguments supporting the conclusions might
defeat other arguments.

5.1 Cases in an argumentation tableau

If we ignore the tests that we add to the root of an argumentation tableau,
then the construction of a tableau can be viewed as the construction of all
cases implied by the available information. Ignoring the tests, each open branch
describes one case implied by the available disjunctive information. If a case
describes the world, additional information may eliminate all other cases and a
defeasible rule should be applied as described in the previous section.

The use of defeasible rules in a case implies that we should extend a leaf of
the argumentation tableau with the consequence of a defeasible rule whenever
the leaf entails the antecedent this rule. We cannot test whether a leaf entails
the antecedent of a defeasible rule by adding the antecedent as a test to the root
of the tableau. We should add the antecedent to the leaf. Preferably the leaf is
saturated because a possibly successful test may fail if we add it too early. To
give an illustration, consider Σ = {p∨q} and D = {p; r, q ; r}. If we add the
tests ({¬p?},¬p) and ({¬q?},¬q) to the root of the tableau, both tests will fail
because there is no support for a tableau closure with only one test. If however
we first rewrite p∨ q and then add the test to the resulting leafs, in each branch
we will derive a support for a closure that enables us to add the consequence
of the corresponding rule. The two cases are illustrated by the two tableaux in
Figure 3.

The example illustrates that adding the test is a strategic choice, which can
be dealt with through search. We add a test for the negated antecedent of a rule
to a current leaf and try to close all resulting branches starting from the leaf. If
we cannot close all these branches, we backtrack to the leaf and remove the test.
Using such a search process is of course not a very efficient solution.

Instead of adding tests for the antecedents of defeasible rules, we can check
whether the current leaf of a branch of a tableau entails the antecedent. This
works fine for propositional logic but raises a problem for predicate logic. If
the antecedent of a rule contains a universal claim; i.e., a universally quantified
proposition that must be true or an existentially quantified proposition that
must be false, then entailment is not decidable because we do not know all the
objects over which we have to quantify. So we should restrict the defeasible rules
to those that do not contain universal claims in the antecedent. This restriction
implies that we cannot state that a Student that Passes all Exams normally
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({p ∨ q}, p ∨ q)

({¬r?},¬r)

({¬p?},¬p)
({¬q?},¬r)

({p ∨ q}, p)

({p ∨ q,¬p?},⊥)

({p ∨ q}, q)

({p ∨ q,¬q?},⊥)

({p ∨ q}, p ∨ q)

({¬r?},¬r)

({p ∨ q}, p)

({p ∨ q}, p)
({¬p?},¬p)
({¬q?},¬r)

({({p ∨ q}, p ; r)}, r)

({({p ∨ q}, p ; r),¬r?},⊥)

({p ∨ q}, q)

({p ∨ q}, q)
({¬p?},¬p)
({¬q?},¬r)

({({p ∨ q}, q ; r)}, r)

({({p ∨ q}, q ; r),¬r?},⊥)

Fig. 3. Reasoning by cases.

receives a Diploma: S(x) ∧ ∀[E(y) → P (x, y)] ; D(x). This even holds if the
exams have been specified explicitly: ∀y[E(y)↔ y = e1 ∨ · · · ∨ y = en].

A possible solution for this restriction is a first order logic that uses binary
quantifiers in combination with a special specification of the ground terms for
which a predicate is true: E = {e1 . . . en} and S(x) ∧ ∀E(y)[P (x, y)] ; D(x).
However, if we wish to stay in the domain of standard predicate logic, we should
rely on the above described search process.

5.2 How to reason by cases with defeasible information

There have been a few proposals how to introduce reasoning by cases in ar-
gumentation systems [2, 6, 13, 19]. Unfortunately, there is no consensus on the
correct conclusion(s) when reasoning by cases using defeasible information. Here
we propose that the (defeasible) conclusions supported in a case by defeasible
information must be the same as when uncertainty is eliminated by additional
information. This principle implies that we only need to eliminate cases (through
additional information) in which the antecedent of a defeasible rule does not
hold. A case can therefore have sub-cases. To give an illustration, consider the
information Σ = {¬(p∧ q), r∨ s, t} and the defeasible rules D = {r ; p, t; q}.
The defeasible rule r ; p is applicable in the case {¬(p ∧ q), r, t}. This case
has two sub-cases, {¬p, r, t} and {¬q, r, t}. An inconsistency can be derived in
the case {¬(p ∧ q), r, t} and the set of last rules involved in the inconsistency is:
{r ; p, t; q}.

Before addressing the technical details of reasoning be cases in using an argu-
mentation tableau, we will first briefly review proposals made in the literature.

– Pollock’s argumentation system OSCAR [12, 13] is an example of an argu-
mentation system that allows for suppositional reasoning, and is therefore
capable of reasoning by cases. Pollock does not explicitly discuss which con-
clusions should be supported when using reasoning by cases with defeasible
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rules. His definition of rebutting attack [12] implies that a suppositional ar-
gument can only be defeated by (1) suppositional arguments of the same
case, and (2) by arguments that do not depend on the considered cases. A
suppositional argument cannot defeat an argument that does not depend on
any case. As argued in [19], this restriction may result in incorrect conclu-
sions.

– Bodanza [6] adapts OSCAR by allowing that a suppositional argument de-
feats an argument that does not depend on any case. However, Bodanza
changes the interpretation of the ¬-operator. ¬α is interpreted as: “α is not
an alternative” when reasoning by cases.

– Recently, the framework for structured argumentation ASPIC+ [11, 15] has
been extended in order to enable reasoning by cases [2]. The authors in-
troduce hypothetical sub-arguments to handle the cases. An argument can
attack a hypothetical sub-argument but not vice versa. Hypothetical sub-
arguments can only attack other hypothetical sub-arguments.

The first and the last approach above result in counter-intuitive conclusions
in the following example.

Harry and Draco are involved in a fight and therefore are punishable.
However, if someone involved in a fight, acted in self-defense, then he or
she is not punishable. Witnesses state that either Harry or Draco acted
in self-defense.

The first and last approach above support the conclusion that both Harry and
Draco are punishable, while we would expect that only one of them is punishable.
Our proposal that conclusions supported in a case by defeasible information must
be the same as when uncertainty is eliminated by additional information avoids
the counter-intuitive conclusion. However, it introduces a technical issue, which
will be discussed in the next subsection.

5.3 Local tableau closures

Reconsider the above example with information Σ = {¬(p ∧ q), r ∨ s, t} and
defeasible rules D = {r ; p, t ; q}. We can use the information and the rules
to construct the tableau on the left in Figure 4. If we eliminate the right most
branch by adding the information ¬s, we get a tableau as described in Section
4, and the set of last rules for the derived inconsistency is: {r ; p, t; q}. It is
not difficult to determine the same inconsistency in left tableau in Figure 4.

It is also possible to construct the tableau on the right in Figure 4 using
the same information. Here it is more difficult to determine the set of last rules
involved in the inconsistent case.

The key to identify an inconsistent case is by checking whether all alternatives
implied by the propositions Ŝ of a closed branch with support S for the closure,
are also closed. Consider the closed left branch in the left and the right tableau
in Figure 4. The support S = {¬(p ∧ q), ({r ∨ s}, r ; p)} for the closure is
based on one of the two cases implied by ¬(p ∧ q), namely the case in which ¬p
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({¬(p ∧ q)},¬(p ∧ q))
({r ∨ s}, r ∨ s)

({t}, t)
({¬t?},¬t)

({({t}, t ; q)}, q)

({r ∨ s}, r)
({¬r?},¬r)

({({r ∨ s}, r ; p)}, p)

({¬(p ∧ q)},¬p)
({

¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({¬(p ∧ q)},¬q)
({

¬(p ∧ q),
({t}, t ; q)

}
,⊥
)

({r ∨ s}, s)

({¬(p ∧ q)},¬(p ∧ q))
({r ∨ s}, r ∨ s)

({t}, t)

({¬(p ∧ q)},¬p)
({¬t?},¬t)

({({t}, t ; q)}, q)

({r ∨ s}, r)
({¬r?},¬r)

({({r ∨ s}, r ; p)}, p)
({

¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({r ∨ s}, s)

({¬(p ∧ q)},¬q)
({¬t?},¬t)

({({t}, t ; q)}, q)
({

¬(p ∧ q),
({t}, t ; q)

}
,⊥
)

Fig. 4. Local tableau closure.

holds. It is possible that the other case in which ¬q holds, is consistent. The case
{¬(p ∧ q), r} can only be inconsistent if the case {¬q, r} is inconsistent too.

To determine whether a case is inconsistent, which we will call a local tableau
closure, we need to consider all cases implied by a set of propositions Ŝ where
S is the support of a branch closure. Since these cases can be spread over the
whole tableau, we will propagate the support for branch closures towards the
root of the tableau. This enables us to check for a proposition involved in a leaf
closure whether all cases implied by the proposition are closed.

Definition 8. Let T be an argumentation tableau with root Γ0 and with leaf
nodes: Λ1, . . . , Λn. Moreover, let Λi1 , . . . , Λik be the closed leaf nodes. We prop-
agate the support for the closure of a leaf toward the root of the tableau.

– If the argument (S, η) was rewritten in a node Γ and resulted in one child
node Γ ′, then add every (S,⊥) ∈ Γ ′ to Γ .

– If the argument (S, η) was rewritten in a node Γ and resulted in more than
one child node Γ1, . . . , Γm, then add (

⋃m
i=1 Si,⊥) with (Si,⊥) ∈ Γi and S ⊆

Si, to Γ .

– If the argument (S, η) was rewritten in a node Γ and resulted in more than
one child node Γ1, . . . , Γm, then add every (Si,⊥) ∈ Γi such that S 6⊆ Si, to
Γ .

Every (S,⊥) ∈ Γ0 represents a local tableau closure.

When we apply the procedure in this definition to the above example, we get
the tableau shown in Figure 5. The tableau supports the local closure that we
expect.

We can prove that Definition 8 guarantees that supports for local closures
represent inconsistent cases.
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({¬(p ∧ q)},¬(p ∧ q))
({r ∨ s}, r ∨ s)

({t}, t)





¬(p ∧ q),
({r ∨ s}, r ; p),
({t}, t ; q)



 ,⊥




({¬(p ∧ q)},¬p)
({¬t?},¬t)({

¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({({t}, t ; q)}, q)({
¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({r ∨ s}, r)
({¬r?},¬r)({

¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({({r ∨ s}, r ; p)}, p)({
¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({
¬(p ∧ q),
({r ∨ s}, r ; p)

}
,⊥
)

({r ∨ s}, s)

({¬(p ∧ q)},¬q)
({¬t?},¬t)({

¬(p ∧ q),
({t}, t ; q)

}
,⊥
)

({({t}, t ; q)}, q)({
¬(p ∧ q),
({t}, t ; q)

}
,⊥
)

({
¬(p ∧ q),
({t}, t ; q)

}
,⊥
)

Fig. 5. The support for a local tableau closure.

Proposition 3. If S is the support for the local closures of a tableau, then Ŝ |−
⊥.

We can also prove that inconsistent cases can be identified through supports
for local closures.

Proposition 4.
Let {({η1}, η1), . . . , ({ηm}, ηm), (S1, µ1), . . . , (Sn, µn)} be a case that is consid-
ered by the argumentation tableau. If {ηi1 , . . . , ηik , µi1 , . . . , µil} is a minimal in-
consistent set, then S = {({ηi1}, ηi1), . . . , ({ηik}, ηik), (Si1 , µi1), . . . , (Sik , µik)} is
a support for a local closure.

5.4 Mutually exclusive cases

There is one last issue concerning reasoning by cases. The tableau rule (S,ϕ∨ψ)
(S,ϕ)|(S,ψ)

does not guarantee that cases are mutually exclusive. The applying this tableau
rule results in two children representing two cases. Both cases may support a
conclusion η. This conclusion is not justified if η does not hold when both ϕ
and ψ are true. As an illustration, suppose that a party will be great if Harry or
Ron will attend it, but not if both will attend (because Harry and Ron have a
quarrel). Here the case that Harry attends the party and whether Ron attends is
unknown, is not the same as drawing a conclusion in the absence of more specific
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information. The disjunction implies that Ron might attend the party too. The
solution to this issue is to ensure that the tableau only contains cases that are
mutually exclusive. We address this problem by adapting three tableau rules.

(S, ϕ ∨ ψ)

(S, ϕ ∧ ¬ψ) | (S, ϕ ∧ ψ) | (S,¬ϕ ∧ ψ)

(S, ϕ→ ψ)

(S,¬ϕ ∧ ¬ψ) | (S,¬ϕ ∧ ψ) | (S, ϕ ∧ ψ)

(S,¬(ϕ ∧ ψ))

(S,¬ϕ ∧ ψ) | (S,¬ϕ ∧ ¬ψ) | (S, ϕ ∧ ¬ψ)

Using these adapted tableau rules we will consider three mutually exclusive
cases given the information that Harry or Ron will attend the party. In two cases
the party will be great and in one case it will not.

6 Conclusion

This paper investigated the possibility of using the semantic tableau method to
derive arguments for claims / conclusions. We conclude that it is possible to
define an argumentation tableau that provides the arguments supporting con-
clusions in case of propositional and predicate logic. If the initial information is
inconsistent, undercutting arguments can also be derived for resolving the in-
consistencies. We further conclude that an argumentation tableau can provide
arguments supporting conclusions if propositional and predicate logic are ex-
tended with defeasible rules. Arguments for inconsistencies, covering rebutting
attacks, can be resolved by deriving undercutting arguments for defeasible rules.
Our last conclusion is that an argumentation tableau enables reasoning by cases
and that conclusions supported by reasoning by cases are intuitively plausible.

Further research can be done on (i) efficiently implementing an argumenta-
tion tableau, and (ii) adapting the argumentation tableau to other logics.
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Abstract. With the vast development and employment of artificial in-
telligence applications, research into the fairness of these algorithms has
been increased. Specifically, in the natural language processing domain,
it has been shown that social biases persist in word embeddings and are
thus in danger of amplifying these biases when used. As an example of so-
cial bias, religious biases are shown to persist in word embeddings and the
need for its removal is highlighted. This paper investigates the state-of-
the-art multiclass debiasing techniques: Hard debiasing, SoftWEAT de-
biasing and Conceptor debiasing. It evaluates their performance when re-
moving religious bias on a common basis by quantifying bias removal via
the Word Embedding Association Test (WEAT), Mean Average Cosine
Similarity (MAC) and the Relative Negative Sentiment Bias (RNSB). By
investigating the religious bias removal on three widely used word em-
beddings, namely: Word2Vec, GloVe, and ConceptNet, it is shown that
the preferred method is ConceptorDebiasing. Specifically, this technique
manages to decrease the measured religious bias on average by 82,42%,
96,78% and 54,76% for the three word embedding sets respectively.

Keywords: Natural Language processing · Word Embeddings · Social
Bias

1 Introduction

In recent years, there have been rapid advances in artificial intelligence and
the accompanying vast development of machine learning applications. With the
increased wide spread (commercial) employment of such applications it has be-
come increasingly more vital to ensure their transparency, fairness and equality.
Recent investigations of various application domains have shown that many of
these applications exhibit several social biases endangering their fairness [16].
Social biases describe the discrimination of certain identity groups based on, for
example, their gender, race or religion. When social biases persist in machine
learning applications, they run the danger of amplifying these biases. For in-
stance, regarding social bias against minority groupds, it was found that these
were recognized considerably less [6]. To illustrate the real world consequences
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which minority group members face through biased algorithms, consider the use
of these face /voice applications in sensitive areas such as medical diagnosis or
the justice system. In cases like these, ”the use of biased information could entail
an extended and undeserved period of incarceration, which unjustly affects those
who are arrested and possibly ruins the lives of their families” (p.7, [6]). With
respect to a medical application, ”consider a revolutionary test for skin cancer
that does not work on African Americans” (p.1, [14]).

Biases inherent in our society are, thus, perpetuated in the machine learn-
ing models, recorded by the model’s outcomes and, hence, threaten to treat
various groups differently. To rectify the unequal treatment, the origin of bi-
ases in artificial intelligence needs to be examined and, consequently, removed.
These biases in data driven applications may have myriad causes. One cause is
the gathering of the data that is primarily done or planned by humans, which
causes the data to be subject to similar biases as humans have. Moreover, the
gathering process favours easy accessible and quantifiable data [15], which may
favour certain societal groups over others. Further, biases are captured in the
under- / over-representation of societal groups in the dataset, which makes the
complete data not representative of the end users anymore [15]. Another origin
of bias is data directly containing sensitive attributes, such as race or religion,
or any proxy features for these. These proxy features may be well hidden, for
instance a societal group may be represented in the post codes of communities.
With the encoding of sensitive information, an algorithm can learn wrong causal
inferences concerning these which can be hard to identify [15].

The origins of bias mentioned above can be present in many representations
of data. To provide an elaborate analysis, this paper will henceforth tend to
textual data solely. To process textual data for an application, the data must be
represented numerically. This is done via word embeddings, which attempt to
capture the meaning and semantic relationships of a word and translate these
to a real valued vector. Since word embeddings are learnt from possibly bi-
ased data, word embeddings themselves may contain biases, which could ripple
through an application. Having outlined why the mitigation of these biases is
vital and having introduced the domain of biased word embeddings, this paper
will review work on analysis and mitigation of biased word embeddings, before
presenting and evaluating various state-of-the-art post processing approaches to
the mitigation of the found biases. Specifically, the attempted removal of multi-
class social biases in three word embeddings is quantified on geometrical as well
as on downstream evaluation metrics.

In order to highlight the results, the problem of religious bias is taken as a
novel example for multi-class social bias. By doing so this paper aims to answer
following research questions:

– To what extent are Religious biases, as an example for social bias, present
in widely used word embeddings?

– How do state-of-the-art multiclass debiasing techniques compare geometri-
cally?
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– How do state-of-the-art multiclass debiasing techniques compare considering
the discrimination of a downstream application?

To address which state-of-the-art debiasing technique performs religious de-
biasing the best, an extensive background on social biases in word embeddings
is given. The evaluation metrics this paper uses to access performance are ex-
plained, before the debiasing techniques examined are illustrated. This paper,
then, highlights the need for religious debiasing by showing its presence in a
word embedding. Consequently a common base for the analysis of bias removal
is established to compare the debiasing methods. Finally, this paper discusses the
performance of the debiasing techniques and based on this evaluation, advises
the use of one.

2 Background

Social biases have been found in popular, widely used word embeddings such
as GloVe [18] or word2Vec [13], [3]. Specifically, gender biases have been found
to persist by creating simple analogies, which have led to the example ”Man is
to Computer Programmer as Woman is to Homemaker” [3], [1]. This analogy
clearly shows that the word embeddings have captured gender bias with regards
to occupation, which may cause disruption in, e.g. a CV-Scanning application.
Similarly, the multi-class racial bias in word embeddings has led to other biased
analogies [11] being coined. Sweeney and Najafan have also shown that multi-
class bias based on nationality or religion is present in word embeddings, which
endangers specific identity groups to be treated differently [21].

Social biases have, therefore, been proven to likely exist within word em-
beddings. As mentioned before (1), biases in data driven artificial intelligence
and ,thus, word embeddings have many causes, especially related to the bias
present in the data used. Papakyriakopoulos, Hegelich, Serrano, and Marco
find that biases in word embeddings are closely related to the input training
data [17]. In fact, even when the text used for training was written for a ”for-
mal and controlled environment like Wikipedia, [it] result[ed] in biased word
embeddings”(p.455, [17]).

A strong cause for bias in textual data is the more frequent co-occurrence
of particular words to the identity terminology of one group rather than the
other(s). Word embedding algorithms typically take co-occurrences as an indi-
cator of context and semantic relationships. Thus, the word embeddings learn
a stronger association between, for example, ’woman’ and ’nurse’ than ’man’
and ’nurse’. This association, however, is an example of a stereotype, which
should ideally not be captured in the artificial intelligence applications. Garg,
Schiebinger, Jurafsky and Zou confirm that word embeddings ”accurately cap-
ture both gender and ethnic occupation percentages” (p.3636, [4]).

The biases within word embeddings can amplify through an application,
causing unfair results, which may influence actions in the real world. This, in
turn, may lead to unequal treatment based on certain sensitive attributes and
actively cause discrimination. Hence, it is vital to establish mitigation methods.

BNAIC/BeneLearn 2020 256



4 Thalea Schlender and Gerasimos Spanakis

Debiasing methods may tend to different categories of biases. For instance,
debiasing binary biases mitigates the unequal treatment of two groups based
on a sensitive feature, and joint debiasing mitigates biases based on various
sensitive attributes simultaneously. This paper demonstrates a multi-class debi-
asing, which deals with bias across more than two groups, by considering three
religious groups, namely: Christianity, Islam, Judaism. The development of de-
biasing techniques is novel research, yet a few state-of-the-art approaches have
been proposed. Following the notion that word embedding biases are a direct
result of bias in the data, Brunet, Alkalay-Houlihan, Anderson, and Zemel have
proposed a technique to track which segment of data is responsible for some
bias [2]. It follows naturally that this can be applied as a debiasing technique
by omitting these segments when training the word embedding model. Most
debiasing techniques, however, concentrate on post-processing pre-trained word
embeddings.

Bolukbasi, Chang, Zou, and Saligrama propose soft and hard debiasing as
binary debiasing methods [1], which Manzini, Lim, Tsvetkov, and Black transfer
into the multi-class domain [11]. Popovic, Lemmerich and Strohmaier expand
these debiasing techniques further into SoftWEAT and hardWEAT, which also
are applicable for joint debiasing [19]. Another joint multiclass debiasing ap-
proach is the Conceptor debiasing method by Karve, Ungar and Sedoc [9].

With the increased research into debiasing methods, Gonen and Goldberg [5]
provide a critical view on the effectiveness of debiasing. The removal of bias in
the techniques, such as hard debiasing, relies on the definition of the bias as
being the projection onto a biased subspace. Gonen and Goldberg, however,
believe that this is a mere indication of the presence of bias. Thus, although the
debiasing methods may eliminate the bias projections, the bias is still captured
within the geometry of supposedly neutralized words [5]. Hence, it is important
to consider the quantification of bias removal critically.

In this paper, the multi-class debiasing methods, all mentioned above, namely
Hard debiasing, SoftWEAT debiasing and Conceptor debiasing will be evaluated
on different metrics in an attempt to quantify bias removal from geometrical
and down stream perspectives. Previous work comparing debiasing techniques
have evaluated their performance on merely one geometric metric quantifying
bias [1], [11], [9], whereas this paper uses two geometric metrics, in addition to
utilizing a downstream bias metric.

These metrics and debiasing techniques will now be introduced, before an in-
vestigation of religious bias, as an example of multiclass social bias, is conducted
on a word embedding. Having established the need for religious debiasing, the
bias removal will be conducted and analysed.

3 Methodology

3.1 Terminology

To aid in the explanation of the debiasing techniques and evaluation metrics,
some definitions and terminologies are introduced first.

BNAIC/BeneLearn 2020 257



An Evaluation of Multiclass Debiasing Methods on Word Embeddings 5

– A class C consists of a set of protected groups defined by some criteria, like
religion or race.

– A subclass Sc then refers to a particular protected group within that class,
such as Judaism when considering the religion class.

– An equality set E for a class is a set containing a term for each subclass,
where all terms can be considered to denote an equivalent concept within
each subclass. Thus, for instance, an equality set for C = religion with Sc =
(Christianity, Islam, Judaism) could be (Church, Mosque, Synagogue).

– A target set T is a set of identity terms referring to a particular sub-class,
thus inherently carrying bias. For Christianity this could include: {Church,
Churches, Bible, Bibles, Jesus}

– An attribute set A contains sets of words referring to several topics, none of
which should, in principle, be linked to the target set of a subclass, but that
a target set of words may be associated to [19]. The aim of the debiasing
methods is to remove this link. Examples for attribute sets are collections of
words considered to be pleasant, or unpleasant, respectively or collections of
words describing notions such as families, arts or occupations.

3.2 Bias Measurements Techniques

To quantify the bias removal, the three metrics introduced below are used. The
first two metrics introduced evaluate the removal geometrically by considering
the cosine distance of target and attribute sets, whereas the third highlights bias
presence via a simple sentiment analysis application.

Word Embedding Association Test (WEAT) The standard evaluation
of bias is the Word Embedding Association Test (WEAT ) as established by
Caliskan, Bryson, and Narayanan. It is widely used, for instance in [1] and [19],
and it has been expanded, for instance, to the Sentence Encoder Association
Test (SEAT) [12].

WEAT tests the association between one target and attribute set, relative to
the association of the other target and attribute set in order to examine the null
hypothesis that both target sets are equally similar to both attribute sets and
not exhibiting any bias [3].

To perform WEAT, the mean cosine similarity of the target set T1 to attribute
sets A1 and A2 is compared to the mean cosine similarity of the target set T2 to
A1 and A2. The exact calculations for the test statistic S(T1, T2, A1, A2) and the
effect size d of the two attribute - target set pairs is given below. Let s(w,A1, A2)
be defined as in equation 1, where w is a given word vector:

s(w,A1, A2) = meana1∈A1
cos(~w,~a1)−meana2∈A2

cos(~w,~a2) (1)

S(T1, T2, A1, A2) =
∑

t1∈T1

s(t1, A1, A2)−
∑

t2∈T2

s(t2, A1, A2), (2)
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The effect size d quantifies how distant these two associations of target and
attribute pairs are. The closer the effect size d is to zero, the less distant the
two associations are and thus, the less bias can be found between the target and
attribute sets [3].

d =
meant1∈T1

s(t1, A1, A2)−meant2∈T2
s(t2, A1, A2)

std-devw∈T1∪T2
s(w,A1, A2)

(3)

It should be noted that bias here is defined on the relative distances.

Mean Average Cosine Similarity (MAC) WEAT as proposed by Caliskan
et al. [3] provides a geometric interpretation of the distance between two sets of
target words and two sets of attribute words.

The mean average cosine similarity (MAC ) uses the intuition behind WEAT
and applies this notion to a multiclass domain as proposed by Manzini et al. [11].
Instead of comparing the associations of one target set T1 and an attribute set
A1, to the association of T2 and A2, MAC considers the association of one target
set T1 to all attribute sets A at one time.

The MAC metric is computed by calculating the mean over the cosine dis-
tances between an element t in a target set T to each element in an attribute set
A, as seen in equation 4, in which the cosine distance is defined as cosdistance(t, a) =
1−cos(t, a). This is repeated for all elements in T to all attribute sets. The MAC
then describes the average cosine distance between each target set and all at-
tribute sets.

sMAC(t, Aj) =
1

|Aj |
∑

a∈Aj

cosdistance(t, a) (4)

Relative Negative Sentiment Bias (RNSB) The relative negative senti-
ment bias (RNSB) is an approach proposed by Sweeney and Najafan [21] in
order to offer insights on the effect of biased word embeddings through down-
stream applications. Its framework involves training a logistic classifier to predict
the positive or negative sentiment of a given word. The classifier is trained on
supposedly unbiased sentiment words, which are encoded via the word embed-
ding to be investigated. Sweeney and Najafan then encode identity terms and
predict their respective negative sentiment probability. These results are used to
form a probability distribution P . Intuitively, unbiased word embeddings would
result in this probability distribution to be uniform, i.e. each class has equal
probability of being classified as of negative sentiment. The RNSB is then de-
fined as Kullback-Leibler divergence of P from the uniform distribution U [21].

3.3 Debiasing Techniques

These three metrics will be used to quantify the bias removal in the three de-
biasing techniques considered in this paper. Namely, these are Hard debaising,
SoftWEAT and Conceptor debiasing.
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Hard Debiasing Bolukbasi et al. [1] established two binary debiasing methods,
namely: Soft and Hard debiasing, which Manizini et al. [11] then applied to the
multiclass domain. These approaches mainly rely on two steps: The identification
of a bias subspace, and the subsequent removal of that bias. The main difference
between these two methods is the severity of bias removal.

The bias subspace identification utilizes equality sets Ei. For each set, the
center of the set is computed and the distance of each term in the equality set to
the center is considered. The subspace capturing the class is then found by exam-
ining the variance of each term. Bias removal is carried out by a ‘neutralize and
equalize’ approach. The projection of words that are declared neutral onto the
bias subspace is subtracted from their word vector. The identity words, however,
rely on their bias component. Thus, in the equalization step, the terms within
an equality set, are centralized and are each given an equal bias component.

SoftWEAT Debiasing Popovic et al. propose debiasing techniques SoftWEAT
and hardWEAT [19], which borrow intuition from WEAT [3]. SoftWEAT ex-
pands the target set of each subclass by considering the n closest neighbours to
all identity terms. Merely this set is then manipulated. To find the linear trans-
formation to be applied, the attribute sets the target set of a subclass is biased
against is found via WEAT and their respective null space vectors are calculated.
The translation of the subclass embeddings is then taken from the null space
vector, which decreases the WEAT score the most. The final transformation can
be scaled by hyper-parameter λ.

Conceptor Debiasing Karve et al. developed the Conceptor debiasing post
processing method [9]. The notion of this method is to generate a conceptor, as
defined by Jaeger [8], to represent bias directions and to subsequently project
these biased directions out of the word embeddings.

A square matrix conceptor C is a regularized identity map, which maps an
input to another – in the debiasing domain, a word embedding to its bias [9]. For
the exact mathematical definition of a conceptor readers can refer to [10] and [9].
Conceptors can be manipulated through boolean logic. Thus, to project out a
bias subspace, one can apply the negated conceptor (representing the bias direc-
tions) to the word embeddings. In addition to this, through the use of boolean
logic, multiple conceptors generated for various class biases can be combined,
enabling joint debiasing [9]. Moreover, a conceptor provides a soft projection [8].
For debiasing this means, that the conceptor dampens the bias directions cap-
tured in it. Hence, the soft projection will alter only some components of some
embeddings, leaving others largely unaltered [7].

4 Analysis of Religious Bias in Word Embeddings

4.1 Data

Each of the debiasing approaches described is based on different types of data:
Conceptor debiasing utilizes a set of unlabeled biased words, Hard debiasing re-
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quires equality sets, and SoftWEAT is based on the target and attribute sets of
WEAT. This paper will attempt to debias against the religion class, specifically
with the subclasses: Christianity, Islam, Judaism. The equality set used for re-
ligious multiclass debiasing in Manizini et al.’s paper [11] is extended by hand
to include 11 equality sets, which are available for downloading1. The attribute
sets used in this paper are inspired from Popovic et al.’s work [19].

Finally, the debiasing methods are applied on three established word embed-
ding representations, namely: Word2Vec2, GloVe3 and ConceptNet 4.

4.2 Analysis

Social biases are present in the word embeddings when neutral words are more
strongly associated with one subclass than another. In this section it is shown
what impact these associations have more specifically to each subclass of religion:
Christianity, Islam, and Judaism.

In order to quantify captured stereotypes in word embeddings, analogies
are scored, as proposed by Bolukbasi et al. [1]. The analogies are then scored

via equation (5), where δ is the similarity threshold and ~a,~b, ~x, ~y are words as
given above. The intuition behind this equation is that an analogy capturing
relationships well should have directions ~a−~b and ~x− ~y approach parallelism.

S(a,b)(x, y) =

{
cos(~a−~b, ~x− ~y) if ||~x− ~y|| ≤ δ
0, otherwise

(5)

Table 1 lists the analogies with a score of over 0.15, that are established within
the word2Vec embeddings. As a comparison, the biased analogy established by
Bolukbasi et al. [1] and Manzini et al. [11], in addition to some appropriate
analogies, are given with their respective scores. Although it follows that the
maximal absolute score of equation (5) is 1, in table 1 one can see that established
analogies like ”kitten is to cat, as puppy is to dog”, achieve a score of 0.38. Thus,
when regarding how high appropriate analogies are scored, biased analogies with
an absolute score of higher than 0.15 indicate that these biased analgoies are
captured in the word embeddings.

An appropriate analogy concerning religion would be ”Muslim is to Islam as
Christian is to Christianity”, which describes the correct correspondence of reli-
gion and its members. However, a similarly high classified analogy is ”Christian
is to judgemental as Muslim is to terrorist”. This wrong association of religions
to terrorist and judgmental is an unjust example of a captured stereotype in
the word embedding. The prejudice of Muslims being more strongly associated
with violence and terrorism is deeply embedded in society as proven by Sides

1 https://github.com/thaleaschlender/An-Evaluation-of-Multiclass-Debiasing-
Methods-on-Word-Embeddings

2 https://code.google.com/archive/p/word2vec/
3 https://nlp.stanford.edu/projects/glove/
4 http://blog.conceptnet.io/posts/2019/conceptnet-numberbatch-19-08/
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and Gross. They hypothesize and confirm that ”Americans will stereotype Mus-
lims negatively on the warmth dimension— that is, as threatening, violent, etc”
(p.5, [20]).

Table 1: Analogies scoring higher than .15 in Word2Vec

Analogy score

Appropriate Analogies

cat is to kitten as dog is to puppy .38332
Muslim is to Islam as Christian is to Christianity .27088
Christian is to Christianity as Jew is to Judaism .26884

Muslim is to Islam as Jew is to Judaism .24883
Christianity is to Church as Judaism is to Synagogue .24054

Analogies Exhibiting Stereotypes

woman is to homemaker as man is to programmer .26415
Black is to criminal as Caucasian is to police .07325

Christian is to judgemental as Muslim is to terrorist .246935
Christian is to conservative as Muslim is to terrorist .215955
Christian is to conservative as Muslim is to liberal .177172

Christian is to judgmental as Muslim is to uneducated .171767
Christian is to judgmental as Muslim is to violent .171105
Christian is to greedy as Muslim is to terrorist .166391

Christian is to judgmental as Muslim is to liberal .155485

Jew is to hairy as Christian is to conservative .222206
Jew is to greedy as Christian is to conservative .213083
Jew is to greedy as Christian is to judgmental .201595
Jew is to hairy as Christian is to judgmental .197683
Jew is to liberal as Christian is to conservative .181528
Jew is to cheap as Christian is to conservative .177668
Jew is to dirty as Christian is to conservative .176638

Jew is to familial as Christian is to conservative .173743
Jew is to hairy as Christian is to violent .168193

Jew is to dirty as Christian is to judgmental .151427

Muslim is to terrorist as Jew is to greedy .239060
Muslim is to terrorist as Jew is to hairy .227352
Muslim is to violent as Jew is to greedy .207468
Muslim is to violent as Jew is to hairy .196129
Muslim is to terroristas Jew is to dirty .192120
Muslim is to terrorist as Jew is to cheap .187418

Muslim is to uneducated as Jew is to greedy .180224
Muslim is to conservative as Jew is to greedy .172667
Muslim is to terrorist as Jew is to familial .168889
Muslim is to liberal as Jew is to greedy .160143
Muslim is to violent as Jew is to dirty .155248

Muslim is to conservative as Jew is to hairy .154570

5 Experiments and Results

5.1 Experimental Setup

After the confirmation of religious bias existence two main sets of experiments
are held and described below.

The first aims to evaluate the performance of bias removal techniques on a
common basis. It does this by observing different quantifications of bias pre- and
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post- the application of the debiasing methods. The metrics RNSB, WEAT and
MAC are calculated for each word embedding, Word2Vec, GloVe and Concept-
Net. We use hard debiasing, Conceptor debiasing with the aperture α = 10 and
SoftWEAT with λ = 0.5 and a threshold of 0.5. After each debiasing method, the
metrics are calculated anew. Thus, it is possible to evaluate the performance of
prior and post debiasing on different word embeddings and debiasing methods in
a universal, comparable manner. Since WEAT and MAC are distance measures,
the results collected here remain stable over multiple runs. However, to calcu-
late the RNSB metric a logistic classifier is trained on randomly split training
and test data. Hence, variability in the RNSB metric is introduced through the
individually trained classifier. To counteract this, the RNSB is averaged over 20
runs.

Afterwards, a second set of experiments aims to examine the impact of the
SoftWEAT hyperparameters by investigating the impact of hyperparameter λ.
This parameter tunes how harshly debiasing is applied and is named as one of
the strong advantages of SoftWEAT [19].

5.2 RNSB Metric on Word Embeddings

The results in table 2 show the RNSB values before and after hard debiasing,
Conceptor debiasing and SoftWEAT debiasing approaches on word2Vec, GloVe
and ConceptNet respectively. The best RNSB scores of each word embedding
is highlighted. To statistically analyse whether the RNSB has been improved
significantly, a one tailed t-test is performed on all values. The p values are given
in table 2 showing that with a significance of α = 0.05, it can be concluded that
each debiasing method improves the mean RNSB value significantly compared
to the non-debiased word embeddings.

Pre-debiasing the word embeddings of ConceptNet carry the least bias, whereas
the GloVe word embeddings carry the most bias, according to their RNSB score.
Hard debiasing appears to debias the embeddings most efficiently, followed by
Conceptor debiasing, whereas SoftWEAT achieves worse results in comparison.
This could be attributed to the fact that SoftWEAT only manipulates a collec-
tion of words (the identity terminology and its neighbours), whereas the other
two debiasing approaches manipulate the whole vocabulary.

The RNSB metric aims to evaluate the bias through a downstream sentiment
analysis task. The results show that post debiasing each religion is classified more
equally negative with respect to the other religions. Concretely, these improve-
ments for the three debiasing methods on Word2Vec can be seen in figure 1,
which depicts the negative sentiment probability for each religion.

The RNSB score decreases as the negative sentiment probability for each
religion approaches a sample of the uniform distribution. In figure 1, one can
compare each distribution to a fair uniform distribution. Observing this, the non
debiased distribution differs from the uniform distribution considerably, whereas
the post hard debiasing distribution resembles the uniform distribution the most.
This is also indicated by their respective RNSB scores shown in table 2.
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Table 2: Relative Negative Sentiment Bias after application of debiasing tech-
niques on Word2Vec, GloVe and ConceptNet

Debiasing Word Embeddings
Techniques Word2Vec GloVe ConceptNet

RNSB p RNSB p RNSB p

Non-Deb. 0.12339 N/A 0.26033 N/A 0.02276 N/A
Conc. Deb. 0.00682 0.027 0.00024 0.002 0.00775 0.031
Hard Deb. 0.0 0.017 0.00023 0.002 0.0 0.024
SoftWEAT 0.07244 0.032 0.0525 0.002 0.0179 0.035

Furthermore, figure 1 shows that Islam terminology is most likely to be pre-
dicted as of negative sentiment. This considerable difference is intuitive when
recalling the Muslim and terrorism association captured in the word2Vec em-
bedding, found in the analogies of table 1. It is also interesting to note that
after performing Conceptor debiasing, Islam terminology actually becomes the
least likely to be predicted of negative sentiment. Thus, Conceptor debiasing has
changed the hierarchy of the religions, whereas hard debiasing and SoftWEAT
debiasing dampen the original non-debiased distribution.
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Fig. 1: The negative sentiment probability for Religion terminology from Chris-
tianity, Islam and Judaism before and after post processing methods, namely:
ND: no debiasing, CD: Conceptor debiasing, HD: hard debiasing and SW: Soft-
WEAT debiasing
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5.3 WEAT and MAC on Word Embeddings

This paper now moves on from the downstream application analysis via RNSB to
the geometric analysis of the bias removal methods via WEAT and MAC. Again,
to identify the impact of each debiasing method, all values can be compared to
the original word embedding prior to any debiasing.

Firstly, the WEAT measurements prior and post the three debiasing meth-
ods are shown in table 3. To ease the interpretation of the table, the best scores
are bold, whilst scores, which decrease performance to the baseline of the non
debiased word embeddings are italic. With the exception of the SoftWEAT appli-
cation on the ConceptNet embedding, all debiasing methods reduce the WEAT
measurements and thus, appear to debias the word embeddings to a given extent.

The performance of the three debiasing techniques in terms of WEAT scores
is the same as found within the RNSB evaluation. The hard Debiasing technique
performs best, followed by Conceptor debiasing, whereas SoftWEAT’s WEAT
scores are poor in comparison. In fact, when applying SoftWEAT to ConceptNet,
it actually increases the WEAT score, indicating an increase of measured bias.
This poor performance could be attributed to the manipulation of less of the
embeddings in the vocabulary, as mentioned earlier.

Table 3: WEAT and |1-MAC| after application of debiasing techniques on
word2Vec, GloVe and conceptnet - The closer to 0 the better

Word Embeddings
Debiasing WEAT scores |1-MAC|
Techniques Word2Vec GloVe ConceptNet Word2Vec GloVe ConceptNet

Non-Debiased 0.39469 0.67556 0.76714 0.11787 0.16771 0.00482
Conceptor Debias 0.17112 0.06348 0.30251 0.00436 0.0003 0.0030

Hard Debias 0.00082 0.038215 0.00441 0.11039 0.15603 0.00624
SoftWEAT 0.31639 0.40967 0.83589 0.07766 0.11871 0.01367

In table 3 the MAC scores are presented. In order to ease comparison, the
MAC values are subtracted from the optimal value 1. Hence, the closer the MAC
values are to 0, the less bias was measured. A similar performance hierarchy of
debiasing techniques found in RNSB and WEAT is expected for the MAC scores.
Again, to ease comparison, bold and italic fonts are used as described above.

Via the one tailed t-test, the corresponding p values to the MAC scores were
calculated. With a significance of α = 0.01, the MAC values are all improved
compared to their non-debiased version, an exception being both SoftWEAT
and hard debiasing when applied to ConceptNet.

Both WEAT and MAC are taken from the notion of measuring bias in cosine
distance. The results of both metrics show that the Conceptor debiasing performs
well, whilst SoftWEAT performs poorly in comparison. It is interesting to note
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that hard debiasing achieves the best RNSB and WEAT scores, yet achieves poor
MAC scores - worsening the MAC score within the ConceptNet embeddings. This
could be due to the fact that WEAT is a relative measure between two religions
and two attribute sets, whereas MAC captures the distance of one religion to all
attribute sets. Hard debiasing may introduce new bias by the harsh removal of
its religion subspace. This bias introduction may then only be captured in the
MAC scores. In fact, when examining the measured mean cosine distance for
each religion to each attribute set in word2Vec, one can see that Hard Debiasing
improves scores for Judaism, but slightly worsens scores for Christianity and
Islam.

In general the results above show that the word embedding ConceptNet car-
ries the least bias as evaluated by MAC and RNSB scores. However, surprisingly,
the WEAT score measured in ConceptNet is the worst of all three. The GloVe
embeddings seem to carry the most bias concerning the RNSB and MAC met-
rics, which is intuitive when considering the common crawl data it was trained
on.

5.4 SoftWEAT hyperparameter λ experimentation

Having analysed the general performance of all three debiasing techniques above,
this paper now turns to the evaluation of SoftWEAT, which has performed most
poorly so far. The analysis will examine whether the tuning of the hyperparam-
eter λ may improve the performance within the evaluation metrics used above.

In figure 2a it can be seen that the WEAT score monotonically decreases
with increasing values up to a λ of 0.6. From then onwards, the WEAT score
steadily increases again. Popovic et a.l [19] report a similar peek in their religious
debiasing of Word2Vec. It seems that with a λ higher than 0.6, new bias is
introduced by removing one bias too harshly. However, when regarding the |1-
MAC| scores in figure 2b, one can see that higher λ values perform better.

When observing the RNSB scores in figure 2c, the tendency that higher λ
values lead to a general increase in the RNSB score is shown. One should note,
however, that the absolute increase between the values is in the small range of
0.031. The variability of the RNSB framework introduced by its anew training
of a classifier at each run in addition to the small range of absolute change in the
experiments explains the variability in figure 2c. Figure 2c shows that a good
result is already achieved at λ = 0. This indicates that the RNSB classifications
already benefit from the identity terminology of a religion and its neigbours
being normalised.

To summarize, it seems that larger λ values improve the bias removal in
terms of MAC scores, that a peak value is found in the WEAT scores and that
the RNSB scores worsen marginally with higher λs.

6 Conclusion

This paper analysed the debiasing methods of word embeddings via multiple
metrics to establish whether a debiasing method could remove religious bias
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present in the embeddings. For this, this paper has reviewed work showing that
social biases persist in word embeddings, whilst briefly showing some possible
causes in the data word embeddings are trained on. The investigation of state-
of-the-art multiclass debiasing methods is done on Hard debaising, SoftWEAT
debiasing and Conceptor Debiasing. This paper evaluates their performance not
only on the established WEAT metric but also contributes a performance eval-
uation on the geometric metric MAC and the downstream metric RNSB. By
establishing a common base for the debiasing methods, this paper achieves a
more meaningful comparison across methods. To highlight the need of the bias
removal, religious bias - as an example of social bias - has been shown to persist
in word embeddings by scoring various stereotypical analogies.

It is found that Conceptor Debiasing performs well across all metrics and
word embeddings, whereas SoftWEAT, regardless of hyperparameter tuning,
performs poorly in comparison. Hard debiasing performs well on RNSB and
WEAT scores, however shows shortages when evaluating the removal via MAC -
indicating that bias may not be removed as well as previously thought. Hence, to
recommend a debiasing technique, which performs well in all bias removal quan-
tifications, Conceptor Debiasing is advised. This comes with the added benefit
that this technique is applicable for joint multi-class debiasing and is most flex-
ible in what data it is given to establish its conceptor on.

Finally, this paper calls for more research into establishing a common debi-
asing approach. Specifically, this approach should perform well in geometric and
downstream analysis of bias removal, whilst not decreasing its semantic power.
A possible solution could be a combination of a post processing method as in-
vestigated in this paper, with a potential pre selection of data to train on to
combat implicit bias.
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Abstract. In this paper, we focus on an interpretable machine learning
technique that has increasingly gained attention as of late, named ’Global
Surrogates’. When using a global surrogate, an interpretable ’white-box’
model is trained on a less-interpretable, but more accurate, ’black-box’
model. The original black-box is used to make the predictions, while the
white-box surrogate is used to understand the decision making process.
A potential problem with Global Surrogates is the fidelity of the white-
box surrogate to the original black-box model. To research the fidelity of
global surrogates, we perform three experiments. In the first experiment,
we find that the Spearman Correlation is the most appropriate metric to
measure the fidelity of surrogates. From the results in the second experi-
ment, we find that Logistic Rule Regression (LRR) and RuleFit, two rule
ensembles, consistently show high fidelity. Also, we conclude that the fi-
delity of the different classes of surrogate models depends quite heavily
on the type of original black box. Finally, when we look into the fidelity-
interpretability trade-off of global surrogates in the third experiment, we
conclude that LRR, RuleFit and decision trees perform well in terms of
their fidelity-interpretability trade-off.

Keywords: Interpretable Machine Learning · Global Surrogates · Fi-
delity.

1 Introduction

Currently, increasingly more decisions are being made with the help of Machine
Learning models. A lot of focus is on making these decisions with the highest
accuracy possible. However, this focus on high accuracy causes algorithms to
become increasingly complex [18]. This increase in complexity comes at a price:
models are gradually becoming less and less interpretable [5]. Even though the-
oretically, the calculations that lead to a certain decision are known, it has
gradually become more difficult to explain what the exact cause of a certain
prediction is.

Multiple stakeholders benefit from insight into the decisions made by Machine
learning models. These stakeholders can be categorized into three main groups
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[16]: The people using the model to make decisions, the developers of a model
and potentially also the human subjects of a model.

The user of a model can benefit from model explanations by gaining new
insights into the task the model is used for. Also, relevant explanations can in-
crease the user’s trust in the model, allowing the user to rely more confidently on
the model. The creators of a model benefit from model interpretability because
explanations are a tool to evaluate a model. For example, model interpretability
might allow a developer to find that a model makes illogical decisions or that a
model is unintentionally biased. Finally, the human subjects of a model might
gain from explanations by learning more about the decision being made about
them. Additionally, a model that makes decisions about human subjects requires
interpretability by law, as defined in the GDPR.

A wide array of techniques has been developed to tackle the challenge of
interpreting complex machine learning models [9]. In the research in this paper,
the focus is on one such machine learning interpretability method, called ’Global
Surrogates’. In Global Surrogates, an interpretable surrogate “white-box” model
is trained on the predictions of an existing less-interpretable ”black-box” model,
in order to interpret the predictions made by the black-box.

Global surrogates have gained popularity in recent research. Surrogate mod-
els have been proposed as “well suited to verify a system and detect failures” by
interpretability research [16]. Also, the European banking authority [6] includes
surrogates as one of their primary examples of interpretability techniques. Fur-
thermore, research by the data science industry sees surrogates as “appropriate
for data scientist entrusted with model development” [2].

For an interpretability method to indeed perform well, two main aspects are
important. Firstly, the explanations given by the interpretability method need
to be understandable and easy to interpret. For global surrogates this is the case;
White-boxes, which are used as the surrogates, are defined by their interpretable
nature. Secondly, the explanations offered by interpretability methods need to
correctly explain the original black-box model: The explanations need to be of
high fidelity to the original black-box model. In contrast to the interpretability
of surrogates, the fidelity is a potential weakness.

Interestingly, very little research has been done to show that surrogate models
produce high fidelity explanations. Thus, multiple questions arise: Are surrogate
models indeed appropriate for regulators and data scientists? How high is the
fidelity of explanations given by surrogates really? Can surrogates be relied upon
to represent complex black-box models? Is using global surrogates worth it, or
should a white-box be used instead?

Based on these questions, we perform a set of three experiments. In the first
experiment, we research which metric we should use to measure the fidelity of
global surrogates. Then, using this metric, we determine the fidelity of multiple
classes of global surrogates on multiple classes of black-boxes in the second ex-
periment. Finally, since the higher fidelity surrogates are expected to be more
complex and thus less interpretable, we look into the fidelity-interpretability
trade-off of global surrogates in the third experiment.
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2 Background and related work

Global surrogates are flexible and widely applicable [12]. They are not only
model-agnostic, but also the model that is used as surrogate is interchangeable:
any interpretable model can be used as the surrogate.

The idea behind surrogate models is borrowed from engineering: Surrogate
modelling is concerned with developing and utilizing cheaper-to-run ”surrogates”
of the original simulation model [14]. In other words, if a simulation is computa-
tionally very expensive, a cheaper-to-run surrogate is used to approximate the
original simulation.

Research on global surrogates for AI interpretability purposes generally has
not received a lot of attention yet. Lakkaraju [11] proposes a novel framework to
explain a black-box through decision sets, which are trained to be unambiguous,
high-fidelity and interpretable. Ribeiro [15] has done research on explaining com-
plex models through the use of Anchors. In this research, Anchors are if-then
rules that sufficiently “anchor” the original prediction locally. On a different
note, Bastani [3] looks at the construction of decision trees from a black box.
Kuttichira [10] also looks into the approximation of a black-box with a decision
tree and proposes a novel way of training the decision tree, making sure to stay
close to the original model.

3 Selecting the right fidelity metric

Machine learning theory describes a wide array of metrics that can measure the
quality of a model. The available metrics can roughly be divided into two sub-
classes: categorical metrics and continuous metrics. Categorical metrics measure
whether instances have a correct categorical classification, while continuous met-
rics measure the relatedness of the continuous output of a model to a continuous
training label. In general, categorical metrics are used for classification purposes,
while continuous metrics are used for regression purposes.

In the context of surrogate classification models, both categorical metrics and
continuous metrics can be used. We can measure how many of the categorical
classification values of the surrogate match the categorical classifications values
of the black-box and thus use a categorical metric. However, we can also measure
how far the continuous outputs of the models are apart and thus use a continuous
metric.

The question arises which group of methods better reflects how well a sur-
rogate resembles the original model. Or, more specifically: Which metric better
reflects if the surrogate model will correctly explain the decisions made by the
original model.

Since continuous values capture more information than categorical values, we
expect the continuous metrics to perform better than the categorical metrics.

There also exist a variety of continuous metrics. A relevant distinction we
can make with continuous metrics is between distance-based continuous metrics
and correlation-based continuous metrics. Distance-based metrics measure how
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far predictions and labels are apart in the real-valued prediction space, while
correlation-based metrics measure how related the predictions and labels are. In
the context of fidelity metrics, correlation-based metrics have the advantage of
being scale-invariant, which should be a significant advantage when determining
the fidelity of surrogates.

3.1 Experiment 1: Fidelity metrics

We will perform an experiment to validate our hypotheses from the previous
section and determine which metric is actually best at determining the fidelity
of a surrogate.

Datasets Since a single dataset would not be enough to confidently base con-
clusions on, multiple datasets will be used to evaluate the metrics on. Artificially
generated datasets will be used to have a clear grip on the complexity and to
be able to generate an infinite variety of datapoints. Initially, data containing
relatively few features and simple decision boundaries is used, after which com-
plexity is gradually increased.

Four types of datasets will be generated, each with their own geometrical
decision boundary shape. The four geometrical shapes consist of: vertices, Gaus-
sian blobs, circles and moons. The 2D variants of these dataset shapes can be
seen in Figure 1.

Fig. 1. From left to right, top to bottom: ‘Vertices’ dataset, ‘Blobs’ dataset, ‘Circles’
dataset and ‘moons’ dataset. The x and y axis represent the feature values, while the
color of the points represents the class of the datapoint.
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Table 1. The specifications of the generated datasets. The percentage in the last
column represent the best average accuracy on the dataset of the models that were
trained during this experiment.

Type # Samples # Features # informative Maximum average classification accuracy

Vertices 1000 2 2 99%
Vertices 1000 2 2 94%
Vertices 1000 10 2 97%
Vertices 1000 10 2 93%
Vertices 1000 10 2 87%
Vertices 1000 10 10 95%
Vertices 1000 10 10 91%
Vertices 1000 20 12 90%
Blobs 1000 2 2 87%
Blobs 1000 10 10 93%
Circles 1000 2 2 92%
Circles 1000 2 2 83%
Circles 1000 2 2 75%
Moons 1000 2 2 90%
Moons 1000 2 2 84%

Multiple key aspects of the generated datasets are changed throughout the
experiment, to obtain multiple variations on each dataset type. Aspects that are
changed include the number of features and the number of informative features.
Also, each of the four types of datasets has specific settings that can be used
to tune the class separation and thus to increase or decrease how difficult it is
to classify the datapoints. To quantify how challenging each of these datasets
is, the ’maximum average classification accuracy’ is reported. This is the best
average score that the black-box classifiers in the experiment obtained on the
dataset.

In the end, a total of 15 dataset configurations is used, as can be seen in Table
1. For each setting of the data generation process, 20 datasets are generated. For
each of these datasets, the results are evaluated through 5-fold cross-validation,
resulting in a total of 100 training and evaluation cycles per dataset. In the 5-fold
cross-validation, the same 4 folds are used for the training of the black-boxes and
the white-boxes and the 1 fold is used to apply the fidelity metrics to. A total
of 300 datasets is generated (20 per dataset configuration), for each of which we
establish which metric agrees on which surrogate is best.

Fidelity measures As fidelity metrics, both categorical and continuous metrics
are included, as well as distance- and correlation based-metrics.

Since the focus is on balanced datasets, accuracy suffices as a categorical
metric. A second categorical metric that is used, is the Area Under the Curve
(AUC). As continuous metrics, both the Mean Squared Error (MSE) and the
Mean Absolute Error (MAE) are used. Both these distance-based metrics are
included, since it is not clear if squared errors are more impactful than the abso-
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Table 2. Overview of the tested fidelity metrics.

Metric Continuous Correlation-based

Accuracy No No
Area Under the ROC curve (AUC) Only the predictions No
Mean Squared Error (MSE) Yes No
Mean Absolute Error (MAE) Yes No
Spearman Correlation Yes Yes
Coefficient of Determination (R2) Yes Yes

lute error in the context of fidelity measurement. The correlation-based metrics
of choice are Coefficient of Determination and Spearman correlation. Coefficient
of Determination to include a linear correlation measure and Spearman corre-
lation to include a non-linear correlation measure. These six metrics and their
characteristics are listed in Table 2.

The accuracy is measured using the output of the original model as labels
and the labels produced by the surrogate as predictions. AUC is measured using
the binary output of the black box as targets and the continuous output of the
surrogate as predictions. The MSE, MAE, Spearman Correlation and Coefficient
of Determination are measured using the continuous “probabilistic” output of
the original model as labels and the continuous output of the surrogate as predic-
tions. We used these metrics to objectively compare the quality of the surrogate
with the original model, and to compare surrogates amongst each others. Which
model to choose depends on the specific priorities of the task.

Models Selecting surrogates that are relatively similar in terms of their com-
plexity should lead to more meaningful results. Additionally, surrogate models
with both similar and dissimilar inner-working should be included.

For the black-boxes, Random Forests and Neural Networks are selected. The
number of estimators for the Random Forest was set to one hundred and Gini
was used as the quality criterion. A Neural Network structure with 3 layers was
chosen, with a hidden layer width of two times the number of input features.
As surrogates, Logistic regression and the rule-ensemble named RuleFit [8] are
chosen. The Logistic regression uses SAGA as solver, while RuleFit uses the
standard settings as mentioned in the paper by Friedman. The Random Forest
and RuleFit are theoretically more related in terms of inner-workings, just like
the Neural Network and Logistic regression. Selecting these models leads to a
total of four surrogates, two per black box.

Asserting which surrogate is truly best: PMI and ALE To determine
which fidelity metric is best at comparing the surrogate to the original model,
we need to in some way assert how related the surrogate and original model
really are. To do this, we introduce two additional measures that compare the
way the surrogate and the original model process the input information into a
prediction.
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The Permutation Feature Importance (PMI) [7] is a basic and relatively well-
known method to measure the importance of each of the features of a machine
learning model. PMI will be used to determine how similar the input feature
importance’s of the surrogate and the original black-box are. The PMI is com-
puted for each of the features of the black box and the surrogate, after which
the mean absolute difference is calculated. The result is a single measure that
indicates how similar the feature importance’s of the surrogate and the original
model are.

The Accumulated Local Effect (ALE) [1] plots describe how features influ-
ence the predictions made by a machine learning model. The ALE plots of the
surrogate and the original black-box will be used to compare the marginal in-
put features effects of the surrogates to those of the original black-boxes. The
similarity between the ALE plots of the surrogate and the ALE plots of the
black-box is compared through the Mean Squared Error between the ALE mea-
sures of both models, resulting in a single measure that indicates the similarity
of the marginal feature effects.

The PMI and ALE measures are relatively expensive to calculate and these
measures are not as easy to apply to every machine learning model out there.
For this reason, the PMI and ALE measures can not simply be used as fidelity
measures, but have to be used as guidance to point out which metric should in
fact be used as fidelity measure.

3.2 Results of experiment 1

Since there are 15 dataset configurations for which results are gathered, re-
sults are too numerous to present for each dataset separately. To solve this, we
combined the results into a legible format as follows: For each black-box, two
surrogates compete to be the best performing surrogate. Depending on which
metric we look at, a different surrogate might seem to perform better. For each
of the black-boxes, we determine which metrics agree on which surrogate is best
and which do not. The total percentage of times these metrics agree with each
other are shown in Table 3. The ALE and PMI metrics give an indication of
which surrogate really performs best, i.e. which surrogate is actually closest to
the original black-box. Thus, the metrics that frequently “agree” with the ALE
and PMI measures can be seen as well-performing measures.

3.3 Conclusion on the fidelity metric

The results show that the absolute difference in relatedness fraction is not very
big for most metrics. It should be clarified however that this is partly due to
the fact that in some cases, the difference in performance between the two sur-
rogates is significant, while in other cases the difference in performance is small.
This means that it is either very clear which surrogate is best and most (if not
all) metrics will agree on which surrogate is best, or the difference in perfor-
mance is very small, resulting in metrics that do not agree on which surrogate
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Table 3. The fraction of times the metrics and PMI/ALE agree on which surrogate
performs best.

Acc. MSE MAE R2 AUC SpCor

Accuracy (Acc.) 1.00 0.677 0.664 0.677 0.761 0.654
Mean Squared Er. (MSE) 0.677 1.00 0.941 1.000 0.759 0.827
Mean Absolute Error (MAE) 0.664 0.941 1.00 0.941 0.743 0.796
Coefficient of Determination (R2) 0.677 1.000 0.941 1.00 0.759 0.827
Area Under the Curve (AUC) 0.761 0.759 0.743 0.759 1.00 0.764
Spearman Correlation (SpCor) 0.654 0.827 0.796 0.827 0.764 1.00

Permutation Importance (PMI) 0.648 0.675 0.666 0.675 0.713 0.720
Accumulated Locale Effects (ALE) 0.659 0.711 0.723 0.711 0.738 0.788

is best. On top of this, for this experiment, “classifying” which surrogate per-
forms best could be seen as a binary classification task: Per black-box, there
are only 2 options. This means that a randomly classifying a surrogate as best
produces a baseline of 0.5. Combined with the obvious cases, this leads to an
easily achievable relatedness score of about 0.6.

As for the best fidelity metric, Spearman Correlation performs best in terms
of PMI- and ALE-relatedness. Based on the theoretical considerations at the
start of this chapter and the results of the experiment, we thus conclude that
Spearman Correlation is the most appropriate metric to use, or at least out of
the metrics that were evaluated.

4 Experimental setup

Now that we have found an appropriate fidelity metric, we define a second and
third experiment. In the second experiment, we use the Spearman Correlation
to measure the fidelity of surrogates. In the third experiment, we look at the
fidelity-interpretability trade-off of the surrogates.

4.1 Experiment 2: The fidelity of global surrogates

In the second experiment, we determine how high the fidelity of global surrogates
is in general, as well as which classes of surrogates align especially well with
certain classes of black-boxes.

Datasets and models To obtain reliable results, we again use a variety of
datasets. This time, datasets with real data are used in addition to the generated
datasets that were used in experiment 1. This is done to ensure the results are
applicable to real-life data and applications.

A range of financial and non-financial datasets is selected for the real datasets,
with varying amounts of instances and features, as can be seen in Table 4.

The Mushroom and HELOC datasets are balanced, while the Creditcard,
Census Income and Statlog datasets are not. These datasets are balanced arti-
ficially through under-sampling of the more available class.
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Table 4. The datasets that were used, each with their number of instances, number
of features and if the datasets is balanced of itself.

Dataset name Instances Features Balanced

UCI mushroom classification dataset 8124 22 Yes
Home Equity Line of Credit (HELOC) 9871 23 Yes
UCI Creditcard Clients 30000 24 No
UCI Census Income 48842 14 No
UCI Statlog 58000 20 No

Again, 5-fold cross-validation is applied to the datasets to ensure stable re-
sults. Just like in the first experiment, the four folds are used as training data
for both the black-boxes and white boxes, while the last fold is used to measure
the fidelity of the surrogate. The training process will be run 10 times for each
dataset.

Multiple black-box and white-box machine learning algorithms are selected to
be trained on the datasets. Since there exists a near-infinite number of machine
learning models, we limit ourselves to black-box models that are popular in
industry. For the white-boxes, well-known models are favoured as well, however,
we also include white-boxes that are slightly less well-known, but have shown
promising predictive performance in literature.

An overview of the models used can be seen in Table 5. As black boxes,
Random Forest, AdaBoost, XGBoost, Neural Networks and SVM are selected.
These models are widely used in industry, while this selection also includes a
variety of inner-workings. The Neural Network contained 4 layers, with a hidden-
layer width of two times the number of features.

As the white-boxes, decision trees, logistics regression and Näıve Bayes are
generally well-known and widely used. The rule-ensembles RuleFit and Logistic
Rule Regression [17](LRR) are included because previous research suggests these
models to have a favourable fidelity-interpretability trade-off. Logistic regression
again uses SAGA as solver, the decision trees automatically grid-searches for the
optimal tree-depth and for Näıve Bayes the standard settings are used. RuleFit
and LRR use the standard settings as suggested in their respective papers.

Table 5. The black-box and white-box surrogates that were tested.

Black-boxes models White-box surrogates

Random Forest Decision Tree
AdaBoost Classifier Logistic Regression
GradientBoost classifier Näıve Bayes
Support Vector Machine RuleFit
Neural Network Logistic Rule Regression
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4.2 Experiment 3: Fidelity-interpretability trade-off

Selecting a surrogate often entails more than purely the fidelity of that surrogate:
The fidelity-interpretability trade-off of the surrogate can also be important. This
is why in addition to evaluating the surrogates purely based on their fidelity, the
interpretability of the surrogates will also be quantified. This should give a more
complete picture with respect to which surrogate is most fit for a certain black-
box and task.

To quantify the interpretability of the surrogates, a methodology from a pa-
per by Molnar is used [13]. Molnar quantifies the interpretability of a machine
learning model as a combination of three factors: the ’Main Effect Complex-
ity’, the ’Interaction Strengths’ and the ’Number of Features’. The ’Main Effect
Complexity’ represents the complexity of the relationships between the input
feature and the prediction, the ’Interactions Strengths’ represents the strength
of the interactions between the features and the ’Number of Features’ represents
the number of features that have an influence on the outcomes of the model.
By re-scaling and combining these three features, Molnar comes to a single in-
terpretability score for each surrogate, where a score of zero means low relative
interpretability and a score of three means high relative interpretability.

The datasets and models used in this experiment are the same real datasets
that were used in the second experiment, for the obvious reason that this exper-
iment is meant to give insight into the interpretability of the models that were
used in the previous experiment. The generated datasets are not expected to
offer additional insights into the interpretability of the models, because of the
relative simplicity of these datasets.

5 Results

5.1 Experiment 2: Fidelity of surrogates

For each of the five black-boxes, fidelity results of the five surrogates are gath-
ered over all the datasets. In Figure 2, we report how on how many datasets
each surrogate performs best per black-box. Notably, the best performing sur-
rogate varies significantly per black-box, but also depending on the dataset. For
Random Forests and XGB, RuleFit is the most frequent best performer. For Ad-
aBoost and SVM, Logistic Rule Regression is the most frequent best performer.
For Neural Networks, Logistic Regression performs best.

In Figure 3, the average Spearman correlation over all twenty datasets is
reported. The average Spearman Correlations tell a similar story as the results
in Figure 2: RuleFit and Logistic Rule Regression perform best in general. This
time however, Logistic rule regression performs better than Logistic regression
on Neural networks. This is because while Logistic regression performs best on
most datasets, it performs poorly on the remaining datasets. A main reason for
this is that logistic regression is not able to take on circular decision boundaries,
causing it to perform badly on the generated circular datasets as well as on the
real datasets that require circle-shaped decision boundaries.
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Fig. 2. The frequency a surrogate performs best fidelity-wise on a certain black-box,
over all twenty datasets.

5.2 Experiment 3: Interpretability of surrogates

The interpretability experiment has been performed on the exact same models
and datasets as the results in the fidelity experiment.

The results can be seen in Figure 4. The interpretability of the surrogates
is relatively consistent over the Black-boxes. Overall, decision trees show a high

Fig. 3. The fidelity of the five types of surrogates on each of the five types of black-
boxes, averaged over all twenty datasets.
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Fig. 4. The interpretability of the five types of surrogates on each of the five types
of black-boxes, averaged over the five real datasets. The error bars show the 95%
confidence interval.

interpretability score for most black-boxes. RuleFit also performs well, especially
on the SVM and Neural Network black-boxes.

If we then combine the fidelity results from experiment 2 and the inter-
pretability results from experiment 3, in both cases using the results of the five
real datasets, we produce the fidelity-interpretability plots as shown in Figure
5. For the black-boxes XGBoost, AdaBoost, SVM and Neural Networks, the
white-boxes RuleFit and LRR are strong contenders on the Pareto-optimality
curve. Decision trees also perform relatively well, especially when focusing on
interpretability. For Random Forests, Decision trees trump the other surrogates.
It must be noticed that we did not include confidence intervals for the measured
interpretability scores. Reason for this is that determining the confidence inter-
vals for Molnar’s interpretability score is complicated and exceeds the scope of
this paper.

6 Conclusion and future work

In this paper, we investigate how well suited global surrogates are as an AI
interpretability method. We performed three experiments: First, we determined
which metric is most suitable to measure the fidelity of surrogates. Subsequently,
we performed an experiment to determine the fidelity of the surrogates. Finally,
an experiment was done to also determine the interpretability of the surrogates.

A variety of white-box surrogate models were trained on a variety of black-
boxes, using a multitude of datasets. Based on the theoretical findings and the
first experiment, Spearman Correlation appears to be the most appropriate fi-
delity metric. When we then use the Spearman correlation to measure the fidelity
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Fig. 5. Fidelity-interpretability trade-off of the surrogates for the five black-boxes. Both
the fidelity and interpretability results were averaged over the five real datasets.

of white-box surrogates in experiment 2, we find that the rule-ensembles named
Logistic Rule Regression and RuleFit perform well fidelity-wise. The results also
show that certain classes of surrogates are better suited for certain classes of
black-boxes. The results of the third experiment show that the interpretabil-
ity of the surrogates is relatively consistent over most black-boxes. In general,
Decision trees and RuleFit show high levels of interpretability. If we then plot
the fidelity-interpretability trade-off based on the results of experiment 2 and 3,
RuleFit, Logistic Rule Regression and Decision trees perform well. Logistic Rule
regression does especially well fidelity-wise, while decision trees perform better
interpretability-wise.

Back in the introduction, we asked ourselves: “Are surrogate models appro-
priate for regulators and data scientists?” and “Can surrogates be relied upon
to represent complex black-box models?”. We know which surrogates perform
best fidelity wise, however, is the level of fidelity of theses surrogates sufficient?

In practice, this is a difficult question to answer. We would say there is not
necessarily an a-priori specifiable level of fidelity for a surrogate to be considered
reliable, since the required level of fidelity heavily depends on the context in
which the interpretability method is applied. For example in healthcare-related
applications, surrogate fidelity might be of much higher importance than in more
business-related settings, like product recommendations.

We also asked at the start: ”Is using global surrogates worth it, or should a
white-box be used instead?”. Most of the time, this comes down to the white-box
vs black-box discussion. While black-boxes generally outperform white-boxes in
terms of predictive performance, this heavily depends on the dataset and the
specific white-box and black-box. Obviously, in cases where a certain white-box
performs as well as the best performing black-box, using the white-box is an easy
choice. Especially LRR and RuleFit will in some cases perform just as well as
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the black-boxes. In most cases, however, the better black-boxes will outperform
the white-boxes. In general, this out-performance will entail a few percentage
points of accuracy. Selecting the right model for the task here, white-box or
black-box, should again be context-dependent: Is a slight increase in accuracy
more valuable, or directly available and accurate explanations?

We would thus emphasise that the context in which interpretability is needed,
is key. On most datasets and black-boxes, the best performing surrogates reach
Spearman Correlation scores of at least 0.9, which translate to AUC scores of at
least 0.99. In general, this should lead to fairly correct, high-fidelity explanations.

6.1 Future work

Firstly, the research in this paper specifically focuses on balanced binary classi-
fication datasets. However, many real-life datasets do not fit this specification.
Therefore, future work includes fidelity research on a wider variety of datasets.
Many of the methodologies used in this paper still apply to non-binary, unbal-
anced and/or regression datasets, however, the related results and conclusions
might be different and are therefore worth looking into.

Secondly, the selection of datasets in this paper is focused on data with a
relatively low number of features. While many real-life datasets will also contain
relatively few features (two dozen at a maximum), black-boxes (and especially
deep Neural Networks) are especially well-suited for data with a higher numbers
of features. A focus of future work could be to investigate if the conclusions
of the research in this paper hold for higher numbers of features. This would
also give insight into if global surrogate techniques can be applied to Computer
Vision or Natural Language Processing use-cases.

Thirdly, the standard methodology to train a global surrogate is used in this
paper: The surrogates are trained directly on the outcomes of the original black-
box. Alternative surrogate training methods might however certainly yield better
results. Therefore, a second direction of future work could be to investigate ways
to increase the fidelity of global surrogates. One such alternative method would
be the training strategy used in the ProfWeight algorithm [4]. In ProfWeight, the
importance of each training sample is weighted by the performance of the original
black-box on that sample, instead of weighting each sample in the training set
equally. The ProfWeight paper reports a significant increase in surrogate fidelity
using this method.

Fourthly, in the application of global surrogates, it is generally assumed that
the same surrogate is used to explain every decision made by the black-box.
However, it could be that a certain surrogate shows higher fidelity on some sub-
sections of the data, while it shows lower fidelity on other subsections of the data.
Therefore, another potentially interesting direction of future research would be
to look into the performance of surrogates on the multitude of subsections of
datasets.

Fifthly and finally, since the interpretability of a machine learning model has
no clear (mathematical) definition, the literature on the subject has a hard time
defining robust interpretability quantification methods. Molnar’s interpretability
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quantification method, which was used in this paper, is one of the more robust
options. The methodology however does have its limitations: It focuses on the
functional complexity of a model, instead of the degree of interpretability of
a model to a human. Also, Molnar’s method doesn’t contain a clear way to
determine confidence intervals for the estimated level of interpretability of the
models. Future work could look into different, potentially more human-focused
interpretability quantification methods. Specifically, more focus could be put on
the level of interpretability of a variety of knowledge representation formats that
can be used to represent the surrogate’s decisions. This should lead to a different
perspective on the fidelity-interpretability trade-off of global surrogates.
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Abstract. How do we make sure that all citizens in a city can enjoy the
necessary amount of green space? While an increasing part of the world’s
population lives in urban areas, contact with nature remains important
for human well-being. As optional tree planting sites and resources are
limited, the best site to plant must be determined. Can we locate these
sites based on the popularity of nearby venues? How can we detect groups
of people who tend to spend time in tree deprived areas?
Currently, tree location sites are chosen based on criteria from spatial-
visual, physical and biological, and functional categories. As these criteria
do not give any insights into the number of people benefiting from the tree
placement, we propose a new data-driven criterion taking socio-cultural
aspects into account. We combine an LBSN mobility data set with a tree
location data set, both of New York, as a case study. Using the mobility
data we create a venue interaction network from which we extract venue
communities. These communities are then scored based on the number of
trees in the vicinity of their venues. Applying multi-objective optimization
theory, we combine the popularity of venues with the tree density of venue
communities to identify locations where planting a tree can benefit the
highest number of people and make the largest impact. 1

Keywords: Urban computing · tree planning · social network analy-
sis · community detection algorithms · mobility data · multi-objective
optimization

1 Introduction

As of 2018, 55% of the world’s population lives in urban areas, a number which
is projected to grow to 68% by 2050 [5]. The North-American continent stands
out in particular, where this number is already at 82%. While it is easy to point

? Both authors contributed equally to this project.
1 This work earlier participated and was selected for the Future Cities Challenge

co-organised by Foursquare at NetMob 2019. The work has not been published
elsewhere.
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out the economical reasons for moving to the city – at least at the first sight
[8] – there are certainly downsides attached to urban life. One of them is the
inescapable fact that cities, by definition [7], have a higher population density,
leading to more built-up areas and thus a scarcer supply of nature than in rural
areas. However, as Rohde and Kendle put it, “it is obvious from any casual
observation that many human beings do not like to be dissociated from the
natural world; as a nation we spend millions of pounds every year on garden and
household plants” [21]. Indeed, contact with nature does seem to be linked to
human well-being and positive emotional effects and is even said to strengthen
urban communities [13, 19]. Apart from socio-cultural benefits, urban greenery
can help to mitigate two characteristically urban problems: air pollution due to
traffic [14] and (extreme) warmth due to the urban heat island effect [17]. The
inclusion of parks and street trees in city landscapes is, therefore, an important
aspect of the urban planning process.

To date, socio-cultural arguments play a marginal if not non-existent role in
formal frameworks describing criteria for selecting potential tree planting sites.
The criteria in these frameworks do not account for the amount of people that
are accommodated by the newly planted trees. When following the established
criteria, trees may end up in places where they are beneficial to some people, but
its effects may not serve the majority of people, or may never reach the people
yearning for them most.

To tackle this problem, we propose taking a data-driven approach based on
available mobility data which allows considering an additional tree planning
criterion. Popular adoption of Location-Based Social Networks (LBSNs) has
allowed the collection of valuable data representing the movement of people
between venues. Data from the location technology platform Foursquare can be
used to construct a network of venues, with users moving between those venues.
Priority should be given to sites visited by many people and specifically by people
who tend to move between areas lacking trees.

We identify such locations by combining two ways of analyzing the structure
of a venue interaction network. By combining the knowledge about (i) venue
popularity, and (ii) venue communities with a low tree density, we can detect
popular venues within tree deprived communities and thus provide a prioritization
that can be used for site selection in the tree planning process, as schematically
shown in Figure 1. This prioritization can be embedded within the criteria of
established tree planning frameworks that currently lack this socio-cultural value
and insight.

Our paper makes the following contributions:

– We describe a novel criterion for potential tree planting site selection based
on network communities within a venue interaction network;

– We apply a concept from multi-objective optimization theory to combine
this criterion with venue popularity, based on network analysis of venue
interaction data from an LBSN;

– We apply this method to prioritize venues as potential tree planting sites in
New York City.
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Tree locations

Venue locations

Venue communities

Fig. 1: We combine three types of data (tree locations, venue locations, venue
communities) to determine a new criterion which can be used in selecting potential
tree planting sites.

The rest of this paper is organized as follows. Section 2 presents the related
work. We present our proposed data-driven tree-planning methodology in Section
3. In Section 4 we experiment with the method by implementing it for a specific
case in New York City. The results for this are discussed in Section 4.2. Finally,
Section 5 presents a number of concluding remarks.

2 Related work

Most of the work in the field of tree planning revolves around selecting appropriate
tree species for predetermined planting sites [23, 24]. This reflects the observations
by Spellerberg [24] and Pauleit [20] that tree planning is often – or at least has
been for some time – an afterthought in the urban design process and characterised
by pragmatism. According to an Australian survey, while the visual aesthetic of
trees and socio-cultural function of green spaces in the city seem to be important
motives for planting trees, the first motive only plays a small role in the tree
planning process [22] and the second motive is not reflected in the sparse body
of site selection criteria that we could find. The work by Amir and Misgav [2], in
which they aim to describe a complete tree planning decision framework, does
incorporate criteria on site selection. They define three useful criterion categories,
which are spatial-visual, physical and biological and functional. Criteria relating
to the socio-cultural function of green spaces, however, are missing. We observed
several works describing site selection criteria [10, 20], but those fall within the
category of physical and biological criteria that are essential for the survival of
the tree. Moriani [14] did use population density in their planting priority index,
but as they focused on the air pollution-reducing quality of trees, this still falls
within the category of functional criteria. We believe then, that the body of site
selection criteria is still incomplete and that we can contribute to this framework
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by introducing a new socio-cultural criterion which takes people movement into
account.

As a way to capture the general movement patterns of people within cities,
we utilize data collected by LBSNs. As defined by Zheng [25], social networks are
social structures that consist of individuals connected to each other via specific
types of interdependencies. In LBSNs these individuals are connected through
their shared experience interacting with the locations in the network. Oftentimes,
in LBSNs users announce their visit to venues through a so-called check-in option.
The check-in data can provide information about the movement of people between
a network of venues. The structure of such a network can be explored to find
underlying patterns. For instance, locations can be grouped based on the similarity
between user profiles [12]. Hung et al. [9] use these user profile similarities to find
user communities. Girvan and Newman [6], however, use clustering algorithms
on the full network to detect communities, eliminating the need for individual
trajectories. Noulas et al. in [18] has studied the spatial network of venues
derived from such data and proposed a variant of gravity mobility models using
inter-venue connectivity information. Most of these approaches have considered
studying the network properties of LBSN data without considering how such
information can be used in improving urban aspects. Recently, Arp et al. [3] have
shown how such data can be used in optimising the state of traffic within the
city. In this paper, we aim to study whether such data can be used for improving
decision making regarding the optimal allocation of resources, notably in this
case the green space, throughout the city.

3 Methods

In this section, we introduce our proposed method. First, we describe two separate
possible indicators and how they can be used to define objectives for planting
trees (Sections 3.1 and 3.2). Then, we argue that the best way to use them is by
combining them using multi-objective optimization theory (Section 3.3), thereby
forming the method we propose in this paper.

3.1 Venue popularity

A first possible approach to maximize the impact of planting a tree, is to plant it
near a place where many people pass by. From this perspective, the goal is to
find the venue that is maximally popular among visitors. To find this place we
compute the degree of all nodes in the undirected network graph G = (V,E,W ),
where nodes v ∈ V are venues and edges e = (v1, v2), e ∈ E movements of people
between two venues v1 and v2, with weight we ∈W as the number of movements
between the pair of venues. The degree of a node v is then defined as the sum of
the weights of the edges that are connected to it:

deg(v) =
∑

e∈{(u,v)|u∈adj(v)}
we (1)
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3.2 Venue community tree density

Although trees near popular venues may reach many people, we will still be
missing those who visit other venues. Naively, one might say that an additional,
or: parallel, objective could be to then look for venues that have the least trees
in the vicinity. This approach would, however, discard the reality that people
move about and that people are thus prone to visit multiple venues. A single
venue that has few trees in its vicinity might not be a major problem if the usual
crowd for this venue also regularly visits other venues that do have more trees in
the neighbourhood. Using LBSNs, we can actually use this observation in our
objective. To this end, we introduce a measure we call the tree density coefficient.
This measure intends to highlight groups of related venues that have a low tree
density, instead of single venues that have a low tree density. A relation between
venues, in this sense, is determined by people travelling often between those
venues.

Using graph theory parlance, these related venues can be discovered through
the task called community detection. A community is a group of nodes of which
the nodes are densely connected with each other, but much less with the rest
of the network [6]. To detect the communities, we use the Louvain community
detection algorithm [4]: a fast algorithm that is able to find communities with
high quality. The algorithm performs based on the optimization of modularity, a
measure that compares the density of connections within a community with the
density between communities. Modularity, as defined by Newman et al. [16], is
computed as in Equation 2:

Q =
1

2m

∑

ij

[
Aij −

kikj
2m

]
δ(ci, cj) (2)

Here, Aij is the adjacency matrix holding the number of edges between nodes
i and j, m the number of edges in the network, ki the degree of node i and δ(ci, cj)
a delta function that returns 1 if i and j are assigned to the same community
and 0 otherwise.

As it is computationally heavy to compute the modularity of a community,
the Louvain algorithm uses heuristics to approximate it. Therefore, it does
not necessarily return the best community layout. To gain confidence in the
robustness of our communities, we choose to run the algorithm 1,000 times in
our own experiments, to create a large number of community layouts.

To compute the tree density coefficient for a venue, we first count the number
of trees in the vicinity of the venues. We approximate this vicinity by creating a
grid of the city, thereby discretizing the geographic space into grid cells, where
each grid cell is 50 by 50 meters, calculated using Universal Transverse Mercator
coordinate system [11]. Each venue vi is mapped to a cell in the grid and is
assigned the number of trees in the cell as its venue tree density vtdi.

We compute the community tree density ctdi for a venue vi by averaging the
vtdi with the venue tree densities of all the other venues in its community Ci,
over multiple iterations k of the community detection algorithm:
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ctdki =
1

|Ci|
∑

vj∈Ci

vtdj , 0 < k ≤ kmax (3)

In the end, the tree density coefficient ci for a venue vi is its average community
tree density value over all iterations of the community detection algorithm:

ci =
1

kmax

kmax∑

t=1

ctdki (4)

3.3 Joining both objectives through multi-objective optimization

The two objectives discussed above, venue popularity and venue tree density, can
both be important in discovering the most suitable location(s) for one or more
new trees. Indeed, a venue with a low tree density coefficient could have only one
visitor, whereas other venues in the same community that have a similarly low
tree density coefficient could have many visitors. In this case, the latter venue(s)
would be more appropriate as a tree planting site. It is therefore important to
take both objectives into account. To achieve this, we borrow a method from
multi-objective optimization theory, namely the Pareto front.

We join the venue degrees, i.e. the popularity of venues, with community-
based tree density coefficients by detecting the set of venues that are Pareto
efficient, i.e., the venues that are found by minimizing the tree density coefficient
and maximizing the influence of the venue: the optimal trade-offs between the
two measures. Also called the Pareto frontier, the venues in this set meet our
criterion of helping most people needing trees. Tree planners could choose any
of the venues along the Pareto frontier, depending on their preference towards
either of the two measures.

4 Experiments

4.1 Data sources

City of choice: New York We conducted a case study to investigate the
implementation and workings of our criterion using real data. For this, we chose
to focus on New York City as data on both venue interactions and tree locations
were richly available.

We used two data sets to construct our criterion. We used venue interaction
data of New York, provided by Foursquare as part of the Future Cities Challenge
2019, to create the venue interaction network. To assign tree density scores, we
used a Street Tree Census data set [1]. In the remainder of this section we describe
the properties of the venue interaction data and street tree data set, respectively,
and how we processed them to implement our methods.
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Table 1: Description of New York data set (Foursquare).
Original After pre-processing

no. of venues (nodes) 17,975 15,803

no. of interactions (edges)
7,919,999

(directed, parallel)
248,597

(undirected)

Venue interaction data Foursquare City Guide is a mobile app that recom-
mends places to its users based on their likes or check-ins. The Foursquare venue
interaction data set comprises of two parts: venues and movements between them.
Venues in this set are locations people can visit. Venue coordinates are recorded,
as well as their name and a category. Movements are recorded when individuals
make consecutive check-ins at different locations.

The data set contains information on ten different cities around the world. As
we focused on New York in this case study, we used the New York data, but it
should be noted this study is applicable to any of the other nine cities, provided
we have access to a corresponding tree location data set. The data was collected
between April 2017 and March 2019.

As not all venues found in the movement data occur in the venue information
data, we considered only the venues with known locations for the construction of
the network. Additionally, we observed that some venues were only connected
within small subgraphs, ‘connected components’, of less than 3 venues and did not
have any edges to the large, main connected component in the graph. These 86
venues were omitted. In the end, we were able to use 15,803 of the 17,975 venues
in our analysis. We used this data to create a network where nodes were represent
venues and the edges represent movements between them. We combined the many
parallel interactions between venues into singular weighted edges between the
venues, where the edge weight denotes the number of interactions between two
given venues. Later, we used this data as input for both the detection of nodes
with high node degrees (see Section 3.1) as well as the Louvain algorithm (see
3.2). In Table 1, we provide a comparison between the original data set and the
pre-processed data set.

Street Tree Census The Tree Census data set contains information on street
trees in New York City and surrounding cities. It contains information on among
others the species and health of the trees, as well as their longitude and latitude.
As only street trees were counted, trees in parks were not taken into account in
the tree survey and are therefore not present in the data set.

As discussed in Section 3.2, we discretized the geographic space into a grid,
counting the number of trees per cell to obtain a measure for the tree density
around the location of each venue. To provide insight into the data, we show the
tree counts over grid cells in Figure 2.
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Fig. 2: The trees within part of the New York street tree dataset, discretized into
grid cells of 50 by 50 meters. Shown as a heatmap-like data plot using ‘FatFonts’
[15].

4.2 Results

Venue popularity We computed the venue popularity as the degree of each
node and observed that the distribution follows a power law (see Figure 3a),
as is generally the case in scale-free networks modeling natural phenomena. To
decide which venues would be interesting as a tree planting site according to this
method, one should prioritize venues with higher degrees.
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Fig. 3: The power law distribution of venue degrees (a) and distribution of tree
density coefficients (b).
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Venue community tree density We used the Louvain community detection
algorithm as implemented in the Python NetworkX package. We set the resolution
to 0.5 to find decently small communities. One such community lay out is shown
in Figure 5a.

As the communities are detected using the heuristic Louvain algorithm,
we averaged the community tree density of the venues over 1,000 runs of the
algorithm, each time possibly detecting slightly different communities in the
network, to obtain their tree density coefficients.

To find tree-deprived communities, we combined the locations of the venues
within the communities with the tree locations in the street tree data set. First,
we calculated the tree density for each venue. Then, the average tree density of
the venues in the community was computed and returned to each of those venues
as its community tree density.

We show the distribution of the tree density coefficient values in Figure 3b.
The distribution is slightly skewed to the right, which means most communities
are filled with trees. Some, however, would still benefit from planting more.
Prioritization for tree planting sites using this method should be given to the
venues with the lowest coefficients.

Fig. 4: The distribution of venues according to degree and tree density coefficient.
The Pareto frontier shows the venues with the optimal tree planting location
according to our criterion. Venue labels correspond with Figure 5b and Table 2.

Joining both objectives through multi-objective optimization To select
the most impactful planting locations, we combined both measures. This results
in the distribution of venues and associated Pareto frontier as shown in Figure
4. Here we minimize the tree density coefficient of the venues while maximizing
their degree. These venues are highlighted by the Pareto frontier and should be
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prioritized according to our new criterion. To indicate the locations of the venues
on the Pareto frontier, we show the venues on a map in Figure 5b and provide
additional insights into the data in Table 2.

It is noteworthy that one of the selected venues (venue H) is a rose garden,
amidst a park lush with trees. This is explained by the fact that the tree data
set contains only street trees and no park trees. Additionally, we found upon
inspection using Google Street View that some of the venues (most notably
venues A, B, D, G and H) do seem to be near a considerate amount of trees.
When inspecting these locations in the tree data base2, we see that there are
either only a few (venues B and G) or no trees (venues A, D, E and H) recorded
in the immediate vicinity of the venues. We see that along with park trees, trees
on private grounds are also not recorded.

(a) One of the 1,000 community parti-
tions.

(b) Optimal tree planting locations (see
Table 2).

Fig. 5: Map of New York City showing the optimal tree planting locations based
on community structures.

5 Conclusion

In this paper, we propose a novel criterion that can be used when selecting
potential tree planting sites. The nature of the criterion is socio-cultural, capturing
people movement between venues and tree-lacking (social) communities into one
measure. Having implemented the measure for a case study on New York City,
we show that the measure is applicable in the field and can be used to support
decision-makers by providing them with optional planting sites along a Pareto
frontier.

2 The tree database can be explored on a map at https://tree-map.nycgovparks.

org/, last visited 9 September 2020.
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We want to note that our approach depends heavily on the quality of the
available data. Regarding the tree data, we see that some venues indicated by our
criterion as tree lacking seem to actually be in a green area. We believe that the
application of our method can be improved with a more detailed tree location
data set. Then, the criterion proposed in this paper can be a meaningful addition
to the established site selection criteria.

Regarding the venue communities, we are aware that the used data set includes
only venues selected and listed by Foursquare. Amongst those venues are major
train stations, schools and other public buildings. The movements between the
venues and hence also the venue communities used to find optimal planting
locations only represent people that are using Foursquare, other inhabitants are
not represented in the data. Unfortunately, full movement data is almost always
proprietary. We would like to mention that the venue network could also be
estimated based on other, more representative data.

We conclude that the newly introduced socio-cultural approach to finding a
tree planting site that benefits different communities of city dwellers is feasible
and can be easily implemented by urban planning organizations. Integration of
this approach depends on the availability of detailed records of existing trees and
movement data of city inhabitants.
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Abstract. Bayesian network modelling is applied to health psychology
data in order to obtain more insight into the determinants of physical
activity. This preliminary study discusses some challenges to apply gen-
eral machine learning methods to this application domain, and Bayesian
networks in particular. We investigate suitable methods for dealing with
missing data, and determine which method obtains good results in terms
of fitting the data. Furthermore, we present the learnt Bayesian network
model for this e-health intervention case study, and conclusions are drawn
about determinants of physical activity behaviour change and how the
intervention affects physical activity behaviour and its determinants. We
also evaluate the contributions of Bayesian network analysis compared
to traditional statistical analyses in this field. Finally, possible extensions
on the performed analyses are proposed.

Keywords: Machine Learning · Bayesian Network · E-health Intervention ·
Structure Learning · Physical Activity

1 Introduction

Nowadays there are various e-health intervention platforms that employ inte-
grated behaviour change techniques in order to change health-related-behaviour
of participants, for example increasing physical activity. These interventions ap-
ply theoretical psychological methods to influence behavioural determinants,
which are factors determining a certain behaviour. These general techniques are
translated to behaviour change strategies by tailoring the theoretical method to
the target population and intervention setting [1]. To measure the effects of such
interventions, various research studies have been performed, assessing physical
activity with tools such as questionnaires and activity trackers. While there is
now a good understanding of what the most important determinants for increas-
ing physical activity are, little is known about how these determinants interact.
Improved understanding of these relationships could be used to improve existing
e-health interventions.
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Supervised machine learning techniques are used to identify relationships
underlying data with labeled input and output, and predict output results for
a given input. These techniques could for example be used to model relations
between diseases and symptoms and give expectations about the presence of
various diseases given symptoms. Bayesian networks [8] represent probabilistic
relationships between a set of variables, where relationships between the input
variables can also be investigated. Such networks can make probabilistic predic-
tions and provide a visual insight in relations among all variables of interest,
thereby providing a potential useful tool to better understand determinants of
physical activity.

In this article, a Bayesian network model is learned from data from a single
intervention study, i.e., the Active Plus intervention [12], aiming at influencing
physical activity behaviour among older adults. We discuss ways to learn from
these complex data containing a significant amount of missing values. Based on
these initial findings, results from previous analyses are compared to results from
applying the Bayesian network model to the same data, to examine the added
value of this technique compared to traditional ones. We show that learning a
Bayesian network model for measurement data from the Active Plus project
indeed reveals conditional dependence and independence relations that provide
new insights and explanations for previously found results.

This paper is organised as follows. Section 2 provides technical background
about methods and algorithms. Section 3 provides a description of the data and
intervention study at hand, and how the data has been pre-processed. Further-
more, the analysis based on the Bayesian network model is explained including a
description of the applied learning strategy, and a missing data analysis to select
appropriate methods for handling the missing data. Then, in Section 4, results
are given about the comparison of evaluated methods, and the comparison of
the results from the Bayesian network model, determined using the best method,
and the results from previous analyses. Finally, Section 5 concludes this paper
and elaborates on possible extensions.

2 Preliminaries

This section gives an overview of the theoretical background relevant to perform
the case study analyses, including a brief introduction of the modelling approach.

2.1 Bayesian network model

A Bayesian network [8] is a probabilistic graphical model represented as a di-
rected acyclic graph G = (V,E), where the set of nodes V represent random
variables, and the set of arcs E represent probabilistic independencies among
the variables. Associated with each node is a conditional probability distribu-
tion of that variable given its parents. The graphical structure implies condi-
tional independence statements. Let V = {X1, . . . , Xn} be an enumeration of
the nodes in a Bayesian network such that each node appears after its children,

BNAIC/BeneLearn 2020 299



and let Πi be the set of parents of a node Xi. The local Markov property in the
Bayesian network states that Xi is conditionally independent of all variables in
{X1, X2, . . . , Xi−1} given Πi for all i ∈ {1, . . . , n}. These local independences
imply conditional independence statements over arbitrary sets of variables.

The joint probability distribution over discrete variables follows from the
conditional independence propositions and conditional probabilities:

P(X1, . . . , Xn) =
n∏

i=1

P(Xi | X1, . . . , Xi−1) =
n∏

i=1

P(Xi | Πi),

where the first equation follows from the usual chain rule in probability theory
and the second from the local Markov property. Note that the conditional prob-
abilities P(Xi | Πi) correspond to the arcs in the Bayesian network specification.
In continuous Bayesian networks, usually a linear Gaussian distribution is as-
sumed, where the joint density is factorised where eachXi | Πi ∼ N (βΠi+α, σ

2).

A temporal Bayesian network is an extension to the static counterpart in that
it is a Bayesian network model over time, where the nodes represent the random
variables occurring at particular time slices. The temporal Bayesian network
model is subject to the condition that arcs directed to variables in previous time
slices cannot occur. In case the temporal Bayesian network is time-homogeneous
(or time-invariant), these models are also called dynamic Bayesian networks [6].
Since in this case study there are only a few time slices and differences between
these slices are not constant, we do not assume time-invariance in the remainder
of this paper.

2.2 Learning Bayesian networks

The following three common classes of algorithms are used to learn the structure
of Bayesian networks from the data: constraint-based algorithms which employ
conditional independence tests to learn the dependence structure of the data,
score-based algorithms which use search algorithms to find a graph that max-
imises a goodness-of-fit scores as objective function, and hybrid algorithms which
combine both approaches. Recent research has shown that constraint-based al-
gorithms are often less accurate and seldom faster and hybrid algorithms are
neither faster nor more accurate [11]. For this reason, we focus in the remainder
of this paper on score-based structure learning algorithms, where local search
methods are used to explore the space of directed acyclic graphs by single-arc
addition, removal and reversal. In particular, we apply tabu search to the phys-
ical activity data in this case study as empirical evidence shows that this search
method typically performs well for learning Bayesian networks [5, chapter 13.7].

There are several model selection criteria that are used in the search-based
structure learning algorithms, where in this paper we have chosen the commonly-
used Bayesian Information Criterion (BIC) [9]. To fit the parameters we have
chosen a uniform prior distribution over the model parameters [4].
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Algorithm 1 Structural EM algorithm, given (M0,o):

for n = 0, 1, . . . until convergence or predefined maximum number of iterations
reached do

Compute ΘMn using a parameter learning algorithm.
Expectation-step:
compute h∗ = arg maxh P(h | o,Mn)
Maximization-step: apply structure learning to determine Mn using data h∗∪o
if Mn = Mn+1 or if stopping criterion is met then

return Mn

end if
end for

2.3 Handling missing data

Learning Bayesian networks with missing data is significantly harder as the
log-likelihood does not admit a closed-form solution if values are missing. In
this paper, we assume that data are missing at random, for which commonly
used methods are listwise deletion, pair-wise deletion, single imputation, multiple
imputation [7]. The deletion approaches omit (observed) values from analyses.
In the listwise deletion approach on the one hand, all observations with missing
values at any measurement are omitted completely. On the other hand, the pair-
wise deletion method does not require complete data on all variables in the
model, and mean and covariance estimations are here based on the full number
of observations with complete data for each (pair of) variable(s). Imputation
methods involve replacing missing values by estimates such as by the mean
of observed values in the attribute, called mean imputation. Single imputation
imputes a single value treating it as known, whereas multiple imputation replaces
missing values by two or more values representing a distribution of possibilities.
In multiple imputation, missing data are filled in an arbitrary number of times to
generate different complete datasets to be analysed, and results are combined for
inference. Finally, in Bayesian network learning, the Expectation Maximization
(EM) algorithm [2] is often applied, which iteratively optimises parameters in
order to find the maximum likelihood estimate, assuming the missing data is
missing at random (MAR). The Structural EM algorithm (SEM) [3] combines
this standard EM algorithm with structure search for model selection.

The variant of the structural EM algorithm that is used in this case study
can be described as follows (see Algorithm 1 for an overview). Let d be a dataset
over the set of random variables V. Assume that o is part of the dataset that
is actually observed, i.e., o ⊆ d. Furthermore, we denote the missing data by
h, i.e., d = o ∪ h, and o ∩ h = ∅. The SEM algorithm aims to find a model
from the space of Bayesian network models over V, denoted by M, such that
each model M ∈ M is parametrised by a vector ΘM defining a probability dis-
tribution P(V : M,ΘM ). To find a model in case of missing values, the complete
data likelihood P(H,O | M) is estimated. The algorithm iteratively maximises
the expected Bayesian network model score optimised by the score-based algo-
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rithm. First the posterior parameter distributions, given the currently best model
structure and observed data, are computed. In the expectation step, these dis-
tributions are used to compute the expected complete dataset, imputing missing
values with their most probable values, also sometimes called hard EM. During
the maximization, the currently best model structure is updated using a tabu
structure learning algorithm, using the imputed data from the expectation step.
Then parameter learning gives new distributions to be used as input for the next
expectation step. To perform the first expectation, an initial network structure
is given as input to the algorithm. In case a maximum number of iterations is
reached or in case of convergence, the Bayesian network model is returned.

3 Description of the Data and Methodology

The experiments in this intervention case study aim to analyse performance of
different methods to handle missing values and to learn the Bayesian network
model for given intervention data in order to compare its results to previous
analyses. This section describes the data, preprocessing phase, magnitude of
the missing data problem and the approach to determine a suitable method in
order to analyse the data by Bayesian network learning. The raw research data
that has been collected during the Active Plus intervention was provided to the
authors and is described in the first subsection.

3.1 Data acquisition and description

The raw research data has mostly been collected via questionnaires and con-
sists of determinants, external factors, measurements of physical activity and
intervention-related information at different time-slots, starting with a baseline
measurement before the participant receives the intervention [14]. For example,
the validated self-administrated Dutch Short Questionnaire to Assess Health
Enhancing Physical Activity (SQUASH) is included in the questionnaires as
subjective measurement of physical activity [15]. Figure 1 illustrates the in-
tervention outline including moments of receiving intervention content and of
measurement in time [12]. There is a distinction between control, intervention
basic and intervention-plus groups, representing the intervention condition. This
condition determines whether a participant receives an intervention or not and
if environmental content is included in the intervention with additional infor-
mation such as opportunities to be physically active in the own environment.
Within these main groups, content is further personalised based on character-
istics of participants, for example state of behaviour change (stage) measured
at baseline or age. Since in the analyses in this article intervention content is
proxied by a few main characteristics, this personalisation is beyond the focus
of this article [12].

As depicted in Figure 1, data has been collected at 4 time-slots; at the baseline
(before receiving the intervention, T0) and, to measure intervention effects, 3
(T1), 6 (T2) and 12 (T3) months after the baseline. About 1258 variables have
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Fig. 1: Outline intervention program including moments of measurement [12].

been measured for a sub-population being a random sample of 1976 adults aged
50 and older. Measurements are at item-level of detail, where an item is a specific
measurement, for example a question in the questionnaire. In preprocessing rules,
it is described how concepts are calculated from item data in order to perform
analyses at a higher level of abstraction.

3.2 Data preprocessing and concept design

The raw data is preprocessed, according to rules to integrate data from different
studies and to aggregate, by calculating concepts from the raw data at item-
level of detail, as mentioned in previous subsection. This subsection describes
assumptions and decisions made during data preprocessing phase and rules to
calculate the concepts included in analyses in this article.

In general, concepts are calculated by the mean or sum of items taking into
account a maximum percentage of items allowed to be missing, except from a
few concepts calculated using predefined formulas. In particular, the SQUASH-
outcome measure, which is the number of minutes per week of moderate to
intensive physical activity, is calculated in a standardised way [12]. In case more
than 25 percent of the items are missing, the concept value is assumed to be
missing. Besides these aggregation rules, preprocessing rules contain decisions
about recalculation of raw data values to unipolar scale.

This article focuses on a selection of the data measured in the Active Plus
intervention and, as already mentioned, analyses are performed at concept-level.
The selection consists of data about the main determinants of physical activity
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Concept Number of items T0 T1 T2 T3

Condition: intervention 1 X

Condition: environment 1 X

SQUASH outcome measure - X X X X

Self-efficacy 10 X X

Attitude(-pros) 9 X X

Attitude(-cons) 7 X X

Intrinsic motivation 6 X X

Intention 3 X X X X

Commitment 3 X X X

Strategic planning 10 X X X X

Action planning 6 X X X

Coping planning 5 X X X

Habit 12 X X X

Social modelling 1 X X X

Social support 1 X X

Table 1: Overview of concept-level variables included in case study.

behaviour, including some social-related determinants, the main outcome mea-
sure from the SQUASH questionnaire and some variables indicating the inter-
vention content the participant receives. As described, the intervention content
that an individual participant has received is personalised and proxied in the
analyses. The proxy of the intervention content is represented in the data by
intervention condition variables, which thus play a central role in analyses. Ta-
ble 1 gives an overview of these and all other concepts included in this articles
analyses, indicating the number of item-level variables the concept variable ag-
gregates and at which moments in time the concept is measured. Note that the
number of items for the SQUASH outcome measure is not indicated since it is
calculated by standard rules.

3.3 Missing data analysis

A significant part of this case study consists of the evaluation of ways to handle
missing data values. This subsection illustrates the magnitude of the missing
data problem in the case study and determines which methods are appropriate
to be evaluated.

A total of 39 variables being concepts at certain moments in time are selected
as subset for analyses. Table 2 demonstrates the number of missing values out of
1976 observations for each of the included concept-level variable. Since the time
dimension is crucial to analyse intervention effects and, as can be seen in Table 2,
more than a fourth of the values are missing for measurements after the baseline,
applying pairwise deletion would result in an immense loss of information. Fur-
thermore, the number of complete observations is for the selection of concepts
360 out of 1976 in total, meaning that applying list-wise deletion would neglect
a large part of the dataset. Since deletion methods are not appropriate to deal
with the missing data in this case study, we resort to the remaining methods
for dealing with missing data, i.e., mean imputation and the SEM algorithm
described in Section 2.3, are applied and results are compared.
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Concept Timeslot Number of missing values (out of 1976)

Condition: intervention T0 8

Condition: environment T0 8

SQUASH outcome measure T0 3
T1 518
T2 565
T3 628

Self-efficacy T0 229
T1 638

Attitude(-pros) T0 149
T1 587

Attitude(-cons) T0 167
T1 597

Intrinsic motivation T0 325
T1 690

Intention T0 141
T1 571
T2 654
T3 748

Commitment T0 31
T1 531
T2 573

Strategic planning T0 156
T1 601
T2 652
T3 661

Action planning T0 182
T1 604
T2 686

Coping planning T0 192
T1 621
T2 668

Habit T0 136
T2 633
T3 662

Social modelling T0 532
T1 915
T2 952

Social support T0 68
T1 561

Table 2: Overview of number of missing values in included concepts.

3.4 Approach

This subsection discusses how a suitable method for handling missing data is
determined in order to model the intervention data. To perform experiments,
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Handling missing data Mean log-likelihood 95% Confidence Interval

Mean imputation -4779 [-4832;-4726]

SEM algorithm -4127 [-4183;-4071]

Table 3: Results of cross-validation analysis for missing data methods.

the bnlearn package in R is used for Bayesian network learning [10]. Source code
has been made publicly available5.

In the comparison of the methods to handle missing data values evaluated
in this article, we apply discrete dynamic Bayesian networks for preprocessed
data that is discretised by manually creating intervals meaningful in the health
psychology field. The models are learnt by the tabu search algorithm optimising
the BIC score (see Section 2.2). In the intervention study at hand only system
missing values occur, for example, in case a participant has not answered a spe-
cific question in the questionnaire or if the maximum amount of items allowed
to be missing is exceeded. The methods evaluated both apply imputation where
missing values are substituted by (maximum likelihood) estimators during the
structure learning phase, namely mean imputation and the structural EM algo-
rithm, introduced in Section 3.3. These two methods are compared by means
of comparing the mean test-set log-likelihood using k-fold cross-validation (with
k = 10).

Finally, a linear Gaussian temporal Bayesian network model for the Active
Plus intervention data is constructed from the preprocessed selection of data by
learning the network structure using SEM. It was chosen to learn a continuous
network rather than a discrete one to prevent possible loss of information from
the discretisation process. In order to evaluate significance of edges, a bootstrap
analysis is applied. Edges that are identified in most bootstrap samples and in
the original network are considered stable findings in the following.

4 Results

This section describes the performance comparison of the methods applied to
handle missing values. Furthermore, the learnt Bayesian network to model the
Active Plus data is presented and results are compared to previous analyses of
relations between determinants in the study by Van Stralen et al. [13].

4.1 Comparison Bayesian network missing data strategy

Table 3 demonstrates the mean log-likelihood over the folds resulting from ap-
plying the implemented cross-validation algorithm to the selected methods for
handling missing data.

The cross-validation analysis shows that the structural EM algorithm signif-
icantly outperforms mean imputation to handle missing data, since the mean

5 https://github.com/SCMWTUM/Active4life-datascience.git
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Model Statistics

Optimal Bayesian network #nodes 39

# arcs 188

# undirected arcs 0

Average markov blanket size 19.90

Average neighbourhood size 9.64

Average branching factor 4.82

Averaged Bayesian network #nodes 39

# arcs 170

# undirected arcs 0

Average markov blanket size 17.54

Average neighbourhood size 8.72

Average branching factor 4.36

Table 4: Statistics Bayesian network model versus averaged counterpart.

log-likelihoods over the folds significantly differ at 5% confidence level. In the
next subsection, the learnt model is presented and results are compared to those
from previous analyses.

4.2 Comparison of Bayesian network model to previous analyses

Figure 2 shows the union of the temporal Bayesian network model learnt by
the tabu search algorithm, applying SEM and optimising BIC score, and the
result of bootstrapping (which we call averaged model). A comparison of these
models shows that only 149 edges appear in both models represented by black
edges in Figure 2, 21 only in the averaged model represented by red edges, and
39 only in the optimal model learnt from the data represented by blue dashed
edges. Table 4 gives the summary statistics of the temporal Bayesian network
model learnt and its averaged counterpart and indicates that model complexity
is decreased in the averaged model. This suggests that most edges are stable,
but not in all cases. Quite some edges appear to be unstable, which is something
that should be analysed further in future.

Compared to previous analyses, the Bayesian network model provides a more
complete insight in the complexity of mechanisms influencing physical activity
behaviour. Previously, mediation analyses have shown that factors such as social
modelling, self-efficacy and intention are significant mediators of the intervention
influencing physical activity behaviour. In Figure 3, a fragment of the stable part
of the averaged model (Figure 2) is shown that includes these previously proven
significant determinants, intervention effects, and effects on physical activity. It
also includes coefficients, which represent the maximum likelihood estimators of
parameters of the Gaussian conditional density distribution of variables given
their parents. This part of the network suggests that intervention effect on physi-
cal activity levels is mainly mediated by influencing habit and intention, and the
extension in which environmental components are added to the intervention does
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Fig. 2: Averaged model learnt from bootstrapping, which includes the false positives
(in blue) and false negatives (in red) from the model learnt for the original dataset.
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Fig. 3: Selected subgraph of the averaged model.

not significantly influence physical activity nor its determinants. Furthermore,
there is a distinction between determinants of physical activity in the short (T1)
and in the long (T2 and T3) run. In the short run, effects on physical activity
are mainly determined by self-efficacy and intrinsic-motivation, which mediates
effects of habit and self-efficacy. In the long-run, social modelling, intention and
habit are important, where habit has the strongest correlation with long run
physical activity levels.

Looking at intervention effect analysis, comparing these results to previous
results by [13], significant influence on social modelling and self-efficacy in the
short run is not demonstrated in the network. Looking at mediator effects on
physical activity, [13] has not found that intrinsic motivation is relevant in the
short run, whereas in the Bayesian network this determinant does have a signif-
icant direct influence on physical activity level in the short run. Also, where in
previous analyses results show significant influence of the environmental exten-
sion on physical activity and determinant levels, this relationship is not found in
the Bayesian network model. All in all, the added value of applying the Bayesian
network model compared to traditional analyses is that the model provides new
in-depth information relevant for understanding the working mechanisms of the
intervention. For example, intrinsic motivation might mediate effects of other
determinants found in [13], such as attitude-cons, on physical activity in the
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short run, which might explain that the Bayesian network model leads to the
difference compared to classic mediator analyses that has been found.

To conclude this section, differences found between previous results and re-
sults from the Bayesian network model are explored and possible explanations
are provided. First of all, previously-found important mediators of intervention
effects on physical activity such as social modelling, self-efficacy and intention
are confirmed by the network model. In the network, habit is also a significant
mediator. [13] did not include this determinant in analyses, so no comparison
can be made with respect to habit being a significant mediator of intervention
effects on physical activity. An important difference is that [13] found differences
between effects in groups of participants having received environmental content
and those who did not receive this extension. In the Bayesian network, those dif-
ferences are not found. However, taking into account uncertain edges, there are
some interesting correlations of the environmental extension with, for example,
commitment at T2. Further analyses could explore these relations in order to
explain the differences. There are also differences found with respect to interven-
tion effects on determinants and mediation effects on physical activity. [13] has
not found intrinsic motivation being a significant mediator, whereas the network
model shows that the effect of self-efficacy on physical activity is both direct and
mediated by intrinsic motivation. The network explores the mechanism in which
self-efficacy influences physical activity, so that intrinsic motivation emerges as
mediator. In the network, the intervention does not have a direct effect on social
modelling nor on self-efficacy. This can be explained by looking at the whole
model, where for example the intervention influences intention, which is corre-
lated with action planning that is again correlated with social modelling. In this
way, some determinants previously-found to be influenced by the intervention
directly, are indicated in the network to be influenced via other determinants.
Hence, the network provides a more in-depth view in the dependencies and the
structure in which determinants and physical activity are influenced by the in-
tervention.

5 Discussion and Conclusions

In this article, the Bayesian network modelling technique has been applied to
an e-health intervention case study to potentially better understand relations
between determinants of physical activity, since this technique has not been
applied often in this field and traditional analyses are not sufficient to reveal
the dependence structure between determinants. The magnitude of the major
challenge of missing values in performing machine learning in real-world studies
in general is examined for this case study and is shown to be of such an order that
conventional methods to handle missing values cannot be used. The performance
of different methods to handle missing data in Bayesian network modelling (i.e.
mean imputation and the structural EM algorithm), considered to be appropriate
in this case study, has been evaluated. Although the comparison between the
mean imputation and structural EM method is not very novel from a machine
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learning point of view, it has been carried out to evaluate their performances in
this specific context. Also, since this modelling technique has not yet often been
applied in this research field, its added value compared to more classic analyses
in health psychology is evaluated by learning a Bayesian network for the case
study and comparing its results to those of previous analyses on the same data.

Analysis of missing data in the case study dataset demonstrates that the
magnitude of this problem causes methods to handle missing data based on
deletion to be inappropriate, since this would result in a significant loss of infor-
mation for this type of data. Two suitable methods, i.e., mean imputation and
the structural EM algorithm, have been compared and we show that applying
the structural EM algorithm leads to the best results in terms of fitting the
data when learning a Bayesian network model for intervention data. The model
learnt for the case study data applying this algorithm to handle missing values,
suggests that the intervention does influence physical activity behaviour, that
some concepts do not play a direct role influencing this behaviour or are not
directly influenced significantly by the intervention and, most importantly, that
there is some structure of how determinants explain this behaviour. Further-
more, there is some room for improvement with respect to increase confidence
in some relationships in the model. Focusing on significant edges in a submodel,
some differences regarding significant direct correlations are found compared to
previous analyses. In brief, it can be concluded that applying Bayesian networks
to e-health intervention study data provides more insight in the complexity of
how interventions cause behavioural change (physical activity) and therewith are
a useful technique to better understand dependence mechanisms of determinants
of behaviour change.

In future work, analyses in this article could be extended for example by
evaluating other imputation methods to be implemented in the structural EM
algorithm, such as a distribution over values instead of imputing the value with
highest probability (soft EM ). From a technical perspective, we will also con-
sider exploring constraint-based structure learning algorithms, other score-based
algorithms, alternative parameter learning algorithms or alternative model se-
lection criteria. From the application perspective, future research could further
elaborate on the structure, in which determinants are related to each other and
physical activity, and on the differences found in the Bayesian network model
compared to previous (regression) analyses. Also, it would be interesting to per-
form analyses in more detail by using item variables in order to clarify the cor-
relations between concepts found in the learnt network model presented in this
paper. Finally, a combined model could be designed for an integrated dataset
including measurements from several different e-health intervention studies, on
different sub-populations, in order to examine if the general model yields dif-
ferent or additional results compared to the submodels for a smaller amount of
data from single studies. However, even with data from a single study, this paper
shows that exploring the differences between results from previous analyses and
from the Bayesian network model, the network provides a more complete and
in-depth insight in dependency structures. More specifically, the network reveals
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relations between variables where a variable influences another via a third one.
In previous analyses, only some of the hypothetical mediator effects are explored
by regression analyses. Hence, our results provide new opportunities to analyse
and confirm our findings using traditional statistical methods.
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Abstract. Detecting if a text is humorous is a hard task to do compu-
tationally, as it usually requires linguistic and common sense insights. In
machine learning, humor detection is usually modeled as a binary clas-
sification task, trained to predict if the given text is a joke or another
type of text. Rather than using completely different non-humorous texts,
we propose using text generation algorithms for imitating the original
joke dataset to increase the difficulty for the learning algorithm. We con-
structed several different joke and non-joke datasets to test the humor
detection abilities of different language technologies. In particular, we
compare the humor detection capabilities of classic neural network ap-
proaches with the state-of-the-art Dutch language model RobBERT. In
doing so, we create and compare the first Dutch humor detection systems.
We found that while other models perform well when the non-jokes came
from completely different domains, RobBERT was the only one that
was able to distinguish jokes from generated negative examples. This
performance illustrates the usefulness of using text generation to create
negative datasets for humor recognition, and also shows that transformer
models are a large step forward in humor detection.

Keywords: Computational Humor · Humor Detection · RobBERT ·
BERT model

1 Introduction

Humor is an intrinsically human trait. All human cultures have created some
form of humorous artifacts for making others laugh [5]. Most humor theories
also define humor in function of the reaction of the perceiving humans to hu-
morous artifacts. For example, according to the popular incongruity-resolution
theory, we laugh because our mind discovers that an initial mental image of a
particular text is incorrect, and that this text has a second, latent interpretation
that only becomes apparent when the punchline is heard [25,24]. To determine
that something is a joke, the listener thus has to mentally represent the set-up,
followed by detecting an incongruity caused by hearing the punchline, and re-
solve this by inhibiting the first, non-humorous interpretation and understanding
the second interpretation [8,14]. Such humor definitions thus tie humor to the
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abilities and limitations of the human mind: if the joke is too easy or too hard
for our brain, one of the mental images might not get established, and lead to
the joke not being perceived as humorous. As such, making computers truly and
completely recognize and understand a joke would not only require the computer
to understand and notice the two possible interpretations, but also that a human
would perceive these as two distinct interpretations. Since the field of artificial
intelligence is currently nowhere near such mental image processing capacity,
truly computationally understanding arbitrary jokes seems far off.

While truly understanding jokes in a computational way is a challenging
natural language processing task, there have been several studies that researched
and developed humor detection systems [26,20,17,6,2,29,1]. Such systems usually
model humor detection as a binary classification task where the system predicts
if the given text is a joke or not. The non-jokes often come from completely
different datasets, such as news and proverbs [20,36,6,2,7,1]. In this paper, we
create the non-joke dataset by using text generation algorithms designed to mimic
the original joke dataset by only using words that are used in the joke corpus
[31]. This dataset thus substantially increases the difficulty of humor detection,
especially for algorithms that use word-based features, given that coherence plays
a more important role in distinguishing the two. We use the recent RobBERT
model to test if its linguistic abilities allow it to also tackle the difficult challenge
of humor detection, especially on our new type of dataset. As far as the authors
are aware, this paper also introduces the first Dutch humor detection systems.

2 Background

2.1 Neural Language Models

Neural networks perform incredibly well when dealing with a fixed number of
features. When dealing with sequences of varying lengths, recurrent connections to
previous states can be added to the network, as done in recurrent neural networks
(RNN). Long short-term memory (LSTM) networks are a variety of RNN that
add several gates for accessing and forgetting previously seen information. This
way, a sequence can be represented by a fixed-length feature vector by using
the last hidden states of multiple LSTM cells [15]. Alternatively, if a maximum
sequence length is known, the input size of a neural network could be set to this
maximum, and e.g. allow for using a convolutional neural network (CNN).

Entering text into a recurrent neural network is usually done by processing
the text as a sequence of words or tokens, each represented by a single vector
from pre-trained embeddings containing semantic information [21]. These vectors
are obtained from large corpora in the target language, where the context of a
token is predicted e.g. using Bag-of-Words (BOW) [21].

BERT The BERT model is a powerful language model that improved many
state-of-the-art performances on NLP tasks [11]. It is built using a transformer
encoder stack consisting of self-attention heads to create a bidirectional language
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model [28]. These attention mechanisms allow BERT to distinguish different
meanings for particular words based on the context by using contextualized
embeddings. For example, even though the word “stick” could be both a noun as
well as a verb, normal word embeddings assign the same vector to both meanings.

BERT is trained in a self-supervised way by predicting missing words in sen-
tences, and predicting if two randomly chosen sentences are subsequent or not.
After this pre-training phase, additional heads can be fine-tuned on particular
datasets to classify full sentences, or to classify every token of a sentence. The
model exhibits large quantities of linguistic knowledge (e.g. for resolving corefer-
ences, POS tagging, sentiment analysis) and achieved state-of-the-art performance
on many different language tasks. This model later got critically re-evaluated
and improved in the RoBERTa model, which uses a revised training regime [19].

RobBERT RobBERT [10] is a recent Dutch language model trained using the
RoBERTa regime [19] on the Dutch OSCAR corpus section [22]. Like RoBERTa,
RobBERT also outperforms other Dutch language models in a wide range of
complex NLP tasks e.g. coreference resolution and sentiment analysis [10].

2.2 Humor Detection

Humor is not an easy feat for computational models. True humor understanding
would need large quantities of linguistic knowledge and common sense about the
world to know that an initial interpretation is being revealed to be incompatible
with the second, hidden interpretation fitting the whole joke rather than only
the premise. Many humor detection systems use hand-crafted (often word-based)
features to distinguish jokes from non-jokes [26,20,17,2]. Such word-based fea-
tures perform well when the non-joke dataset is using completely different words
than the joke dataset. From humor theory, we know that the order of words
matter, since stating the punchline before the setup would only cause the second
interpretation of the joke to be discovered, making the joke lose its humorous
aspect [24]. Since word-based humor detectors often fail to capture such temporal
differences, more contextual-aware language models are required to capture the
true differences between jokes and non-jokes.

Using a large pre-trained model like the recent BERT-like models is thus an
interesting fit for the humor detection task. One possible downside is that these
models are not well suited for grasping complex wordplay, as their tokens are
unaware of relative morphological similarities, due to the models being unaware
of the letters of the tokens [3]. Nevertheless, BERT-like models have performed
well on English humor recognition datasets [29,1].

Recently, several parallel English satirical headline corpora have been released
for detecting humor, which might help capture subtle textual differences that
create or remove humor [30,16]. Lower resource languages however usually do not
have access to such annotated parallel corpora for niche tasks like humor detection.
While there has been some Dutch computational humor research [31,32,33], there
has not been any published research about Dutch humor detection, nor are there
any public Dutch humor detection data sets available.
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2.3 Text Generation for Imitation

There are many types of text generation algorithms. The most popular type of
text generation algorithms use statistical models to iteratively predict the next
word given previous words, e.g. n-gram based Markov models or GPT-2 and
GPT-3 [23,4]. These algorithms usually generate locally coherent text [31]. A
common downside is that the output tends to have globally different structures
than the training data (e.g. much longer or shorter), or even break (possibly
latent) templates of the dataset [34].

Dynamic Templates Templates can be seen as texts with holes, which are later
filled, and thus enforce a global textual structure. One approach for learning these
is the dynamic template algorithm (DT), which is designed to replace context
words with other, grammatically similar words [31]. It achieves this by analyzing
the part-of-speech (POS) tags in the dynamic template text and replaces these
words with context words with the same POS tags. It prioritizes low unigram-
frequency words, as these are usually key words determining the context of the
text. This way, the dynamic template algorithm generates a large variety of more
nonsensical versions of given texts, using only words from the corpus.

3 Data

3.1 Collecting Datasets

We collected a Dutch joke dataset by combining the jokes found on Kidsweek1,
DeBesteMoppen2 and LachJeKrom3. This resulted in a dataset of 3235 jokes.

For the non-joke datasets, we first collected several datasets inspired by
the type of datasets used in English humor detection, namely proverbs and
news [20,36,6,2,7,29,1]. The proverbs dataset originates from the Dutch proverbs
Wikipedia page and contains 1887 proverbs. The news dataset are 3235 head-
lines uniformly sampled from the 100K Dutch news headlines dataset [37].

3.2 Negative Generation: Generating Non-Jokes from Jokes

Since news and proverbs use completely different words and structures, there is
a need for a new type of challenging dataset for humor recognition that uses non-
jokes that are close to jokes. Given the fragile nature of a joke, changing several
important words usually turn the joke into a non-humorous text. We propose
a new type of dataset for humor detection by generating negative examples by
automatically imitating the joke dataset. The dynamic template algorithm is a
right fit for this, as it will not change the global structure like Markov models
might do and is less prone to plagiarising large parts of the training corpus [31].

1 https://www.kidsweek.nl/moppen
2 https://www.debestemoppen.nl/
3 https://www.lachjekrom.com/
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The DT algorithm creates absurd, but globally similar texts, by grammatically
similar words into another joke. For example, the joke “Wat is groen en plakt
aan de muur? Kermit de sticker!”4 was turned into the non-joke “Wat is groen
en telefoneert aan de muur? Kermit de spin!”5.

We chose the same parametrisation used in the original paper (see Ap-
pendix A) [31]. The resulting non-jokes thus only use words from the jokes
dataset, with comparable frequencies, and still have similar grammatical struc-
tures, albeit nonsensical content. This way, language classifiers that just learn
which words are more common in jokes (e.g. “oen”, “Jantje”, “blond”...) will be
at a disadvantage compared to models that have better insight in the semantic
coherence of a joke. Another advantage of this method for parallel corpus creation
is that it is easily extensible to other lower resource languages.

4 Evaluation

We devised two types of learning tasks for detecting humor in these new datasets.
The first is the classic humor detection task with binary labels representing joke
and non-joke. The second is a pairwise humor detection task, where given a joke
and a non-joke, the algorithm needs to detect which of the two is a joke.

4.1 Models

We compare four different models6, namely a Naive Bayes classifier with the
TF-IDF of 3000 (1,3)-grams as features, an LSTM with Dutch word embed-
dings [27], a CNN with two convolutional layers and max pooling on Dutch word
embeddings [18], and RobBERT [10]. The use of LSTMs and CNNs allows us to
compare the RobBERT model with the previous generation of neural language
models.

4.2 Classification Experiment

In this binary classification experiment, the models classifies a given text as a joke
or a non-joke. We compared three different datasets, comparing jokes with news,
with proverbs, and with generated jokes using the dynamic template algorithm.
We performed a random hyperparameter search with 10 runs for the LSTM, CNN,
and RobBERT. The full search space and other hyperparameters are listed in the
Appendix in Table 2 and Table 3. In addition, we use these random hyperparam-
eter trials to estimate the maximum validation accuracy [12]. This allows us to
compare performance without it being caused by a computational budget favor-
ing one model. Figure 1 shows these estimates for the validation accuracy for all
three datasets. For both the news (Figure 1a) and proverbs (Figure 1b), both the

4 “What’s green and adheres to the wall? Kermit the Sticker”, pun on “kikker” (“frog”)
5 “What’s green and telephones on the wall? Kermit the Spider”
6 The code, models, data collectors and demo are available on https://github.com/

twinters/dutch-humor-detection.
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Fig. 1: Estimated maximum validation accuracy [12] in function of the number
of hyperparameter trials for the LSTM, CNN, and RobBERT models.

CNN and the LSTM-based models perform a couple of percentage points below
the RobBERT model. More notably, the RobBERT model consistently achieves
a validation accuracy around 99%, whilst the LSTM has a higher variance than
both the CNN model and RobBERT. This indicates that the LSTM-based model
is less robust to suboptimal hyperparameter assignment.

From these randomized trials, we select the best-performing model using
the validation accuracy and evaluate on the held-out test set. The results are
presented in Table 1. The baseline, Naive Bayes, performs quite poorly, with the
results being no better than random on all three datasets. This is surprising,
given that this method has been used successfully for humor detection in English
for similar types of datasets, albeit often using handcrafted features instead of
words [20,17,2]. This shows that a classifier using only token features is insufficient
for all three Dutch humor datasets. The LSTM and CNN models recognise
about 94% for the simple datasets However, they both fail at distinguishing
between jokes and non-jokes generated with dynamic templates. This indicates
that despite using Dutch word embeddings, these models likely still relies on
vocabulary differences or the small lengths news and proverbs tends to have.

Finetuning RobBERT gives us a testing accuracy of 98.8% and 99.6% on
news and proverbs, respectively, and 89.2% on the more challenging task with
dynamic templates. This shows that our newly created dataset is indeed more
challenging than using non-jokes from completely different domains. Interestingly,
RobBERT’s false positives contain many jokes with only limited replaced words,
or that still made semantically coherent sense, e.g. the joke “Hoe heet de broer
van Bill Mars? Bill Twix!”7, only had one replacement (“Bruno” to “Bill’ ),
retaining some of the joke’s humor. RobBERT’s higher performance than the
other neural networks also illustrates the advantage of pre-trained language
models for detecting semantic coherence in jokes, or at least distinguishing it
from semantically incoherent non-jokes generated by the DT algorithm, either of
which are useful properties. To get more grasp on this, we classified all elements
of the news and the proverbs dataset using the finetuned RobBERT model for the

7 “What’s the name of Bill Mars’ brother? Bill Twix!”
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Table 1: Classification results for the held-out test set on three datasets versus
the Jokes dataset. For the accuracy, we additionally report the 95% CI.

Dynamic template

News Proverbs Single Pairwise

Model ACC [%] F1 [%] ACC [%] F1 [%] ACC [%] F1 [%] ACC [%] F1 [%]

Naive Bayes 51.0± 3.1 49.3 60.2± 3.5 50.5 49.9± 3.1 49.9 - -
LSTM 94.0± 1.5 94.0 94.4± 1.6 94.1 46.8± 3.1 35.2 47.9± 4.4 32.4
CNN 93.6± 1.5 93.6 94.1±1.7 93.6 47.4± 3.1 46.3 58.6± 4.4 58.5
RobBERT 98.8± 0.7 98.8 99.6± 0.4 99.6 89.2± 1.9 89.1 82.51± 3.4 82.5

jokes versus dynamic template single setting. This input data was thus completely
out-of-domain for this model. We found that 93.23% of the news and 73% of
the proverbs were labeled as a joke by this model, indicating that at least for
such relatively short strings, the DT model might rely on topical or semantic
coherence to recognise humor.

4.3 Pairwise Classification Experiment

We additionally perform an experiment where the joke and their non-joke coun-
terpart, generated by the DT algorithm, are directly compared in a pairwise
fashion. The model thus has to recognise which one is more humorous than the
other, opening the way for humor preference learning algorithms [13].

We evaluated an LSTM model with two separate recurrent layers with train-
able Dutch word embeddings that are concatenated before a fully connected layer,
which was also used for argument classification [9]. We evaluated a CNN model
following a similar approach, with the same base architecture as in the previous
experiment. For RobBERT, we are using the same setup and hyperparameters,
and feed the model both texts simultaneously, separated by the separator token.

In Table 1, we can see that LSTMs are still unable to distinguish jokes from
generated non-jokes, and CNNs only seeing a small performance boost in the
pairwise case over the single case, illustrating the advantage of using such a
challenging dataset. RobBERT on the other hand is performing reasonably well
but surprisingly loses some accuracy compared to the single classification case.
This is likely due to relatively more of the jokes being truncated to fit its input
size limit, given that two texts are now fitted into the same input space.

5 Future Work

One way to improve the humor detection performance could be finding better
ways of generating joke-like non-jokes, thus further increasing the difficulty of
the dataset. The DT algorithm is prone to occasional grammatical errors, which
the models might pick up and use to just recognize grammatical errors, rather
than recognize jokes.
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These new humor detection algorithms also pave way for new humor genera-
tors, e.g. using a generate-and-test approach [35]. RobBERT could even fulfill two
roles in such a generator, e.g. using a genetic algorithm that uses a pairwise joke
detection head as tournament selection, and the word masking head to mutate
the genomes. Such a generator could also be useful in a collaborative setting
where the humor comparator suggests better ways of phrasing a joke by subtly
changing it e.g. by rearranging a potential punchline word to occur later.

6 Conclusion

We created three datasets for humor detection specifically for Dutch and proposed
a new way to make more challenging humor detection datasets. We hypothesized
that currently popular approaches, like discerning news or proverbs, can rely on
recognizing domain-specific vocabularies instead of the semantic coherence that
makes jokes funny. We illustrated this by constructing several models for humor
detection on these new datasets; where we found that previous technologies indeed
are not or barely able to distinguish jokes from similar non-jokes. For a more
modern architecture like RobBERT, the performance is only slightly lower for the
generated non-jokes. This shows that the generated negatives dataset is indeed
more challenging, and that transformer models are a step in the right direction
for humor detection given their context-sensitivity. These datasets and findings
open the way for interesting new, more context-aware Dutch joke detection and
generation algorithms.
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A Dynamic Template parametrisation

The parameters used for the dynamic template algorithm to generate the non-
jokes are a maximum word frequency of the 62% percentile, and minimum number
of replacement of at least one replacement for every 25 characters, and three
randomly sampled jokes for context words

B Hyperparameter space

Table 2: The hyperparameter space used for the LSTM and CNN models with
Dutch word embeddings.

Hyperparameter LSTM model CNN model

adam epsilon 10−8 10−8

fp16 False False
hidden dimension i ∈ {8, 16, 32, 64, 128} —
learning rate [10−3, 10−1] [10−3, 10−1]
pooling — max
convolutional layers — 2
kernel size. — 3
max grad norm 1.0 1.0
num train epochs 15 15
batch size 64 64
seed 1 1
dropout 0.1 0.1

Table 3: The hyperparameter space used for finetuning RobBERT.

Hyperparameter Value

adam epsilon 10−8

fp16 False
gradient accumulation steps i ∈ {1, 2, 3, 4}
learning rate [10−6, 10−4]
max grad norm 1.0
max steps -1
num train epochs 3
per device eval batch size 8
per device train batch size 8
seed 1
warmup steps 0
weight decay [0, 0.1]
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Abstract. This paper discusses the dynamics of Transaction Cost (TC) in Indus-
trial Symbiosis Institutions (ISI) and provides a fair and stable mechanism for
TC allocation among the involved firms in a given ISI. In principle, industrial
symbiosis, as an implementation of the circular economy paradigm in the context
of industrial relation, is a practice aiming at reducing the material/energy foot-
print of the firms. The well-engineered form of this practice is proved to decrease
the transaction costs at a collective level. This can be achieved using information
systems for identifying potential synergies, evaluating mutually beneficial ones,
implementing the contracts, and governing the behavior of the established rela-
tions. Then the question is: “how to distribute the costs for maintaining such an
information system in a fair and stable manner?” We see such a cost as a col-
lective transaction cost and employ an integrated method rooted in cooperative
game theory and multiagent systems research to develop a fair and stable alloca-
tion mechanism for it. The contribution is twofold: in developing computational
multiagent methods for capturing the dynamics of transaction costs in industrial
symbiosis and in presenting a novel game-theoretic mechanism for its allocation
in industrial symbiosis institutions.

Keywords: Multiagent Systems · Applied AI · Practical Applications of Multia-
gent Techniques ·Agent-Based Computational Economics · Industrial Symbiosis.

1 Introduction

Industrial symbiosis is a transitional business model to shift from a linear economy
paradigm towards implementing the concept of circular economy in the context of
industrial relations/networks. In principle, the aim is to facilitate the circulation of
reusable resources among the network members [8,18,32]. Realizing such a form of col-
laboration requires methods for identifying potential matches [17], evaluating them to
generate mutually beneficial instances [35], implementing the cost-sharing schemes in
bilateral contracts [33], and decentralized governance of the established relations [34].
As elaborated in [36] problematic situations occur when we move from bilateral rela-
tions to multilateral forms in multiagent industrial symbiosis. Dealing with such prob-
lems requires: (1) developing practical methods able to capture collective-level con-
cepts, such as collectively realized transaction costs, (2) practice-oriented semantics
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to reason about the link between individual (firm-level) concerns and the collective
(institution-level) attributes, and (3) implementable mechanisms to guarantee desirable
collective attributes with no harm to firm-level concerns. This work aims to address
this gap by focusing on the nature of collective transaction costs in industrial symbiosis
and developing a contextualized allocation mechanism that guarantees game-theoretical
fairness and stability properties.

As originally introduced by [31], Transaction Costs (TC) play a key role in the es-
tablishment and stability of different forms of contractual relations. This is also the case
for industrial symbiosis relations, both in bilateral and multilateral forms. For instance,
when an industrial cluster manager aims to share the collective costs for maintaining
the shared environments among the cluster members, she should take into account the
firm-level concerns. One general approach is to see the contribution of each firm to the
collective as a measure for making such cost/benefit allocation decisions [3]. In the case
of IS, while we have such contribution-aware tools for allocating costs in bilateral IS
relations [33], they fail to guarantee some basic properties such as collective rationality
(related to whether firms have any incentive to leave the collaboration) on a multilateral
network level [36]. In practice, such a disadvantage results in inefficient deployment of
an IS management platform in real-life industrial symbiosis networks.

To develop an efficient technique for dealing with this problem, it is crucial to un-
derstand the context and see what are transaction costs in IS. In multiagent industrial
symbiosis, the main elements that contribute to the transaction cost are costs involved in
market/partner searching, negotiation costs, and the relation enforcement cost [7]. We
argue that in modern industrial symbiosis, and thanks to (online) IS information sys-
tems/platforms, the total IS transaction cost boils down to costs for establishment and
maintenance of the information system which is responsible for handling the search-
ing/matching process, for supporting/automating the negotiations, and for synthesizing
the required enforcement measures. Then the question is about finding methods to dis-
tribute this total cost among the involved firms, such that it would be fair with respect to
each firm’s contribution. That means that, in a given IS networks, after a basic payment
for getting involved in the platform, firms that gain more (as a result of exploiting the
potentials in the platform) are expected to pay more for upcoming transaction costs. In
other words: “with more power comes more responsibility”. This perspective supports
the so called fairness notions—proposed in cooperative game theory—that agents’ in-
dividual benefit/cost share oughts to reflect their contribution to the collective bene-
fit/cost [13,37]. While the idea to take into account each agent’s contribution provides
a basis for allocating the costs in multiagent industrial symbiosis, we lack methods for
defining the value of each and every coalition of firms, involved in the network1. Such
an input is crucial for applying standard fair allocation mechanisms (e.g., the notion of
the Shapley value [25,22]). In response, developing a method that characterizes IS as a
game is the first objective of this work. The result of this first step will be a game-form
that in turn enables the application of game theoretic solution concepts for allocating
the transaction cost. Technical details will follow in Section 2.

1 In the game-theoretic language, the characteristic function of the cooperative multiagent in-
dustrial symbiosis is not well-defined with respect to the context of industrial symbiosis and
its constraints.
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To formulate a realistic game, based on which the transaction cost can be allocated,
one question that is crucial to address is “what is the nature of transaction cost in IS
practices?”. In the IS literature [16,35], costs for operationalizing IS are categorized as
costs for transporting the resource, for treating them by means of recycling/preparation
processes, and finally transaction costs as discussed above. In principle, transportation
and treatment costs are based on the realization of physical facts and interactions2. For
instance, the physical distance between the firms is one of the key measures that deter-
mines the transportation cost and hence can be a fair basis for allocating the collective
transportation cost among the involved firms (e.g., see [30]). For treatment costs—as
the total cost that results from recycling, drying, and categorizing—we also have phys-
ical processes that consume resources (e.g., electricity and diesel cost of a recycling
plant). However, the transaction cost is not based on physical facts, but mainly is the
aggregation of costs of institutional acts, e.g., negotiation costs and corresponding costs
for establishing monitoring/enforcement mechanisms. These acts are on the one hand
required to enable or keep track of physical processes (hence have a physical connota-
tion) and on the other hand are related to the structure of interfirm connections (hence
have an institutional nature). Therefore, it would be reasonable to consider a form of
dual-nature physical-institutional IS value as a basis for allocating the collective trans-
action cost among the involved firms. This way of capturing the institutional dimension
of the transaction cost is in-line with the original studies on this notion, as presented
in [31,28]. Although the line of reasoning seems straightforward, capturing such a per-
spective in a practical tool for allocating the collective transaction costs in multiagent
industrial symbiosis is an open problem. (As highlighted by [36], some standard al-
location mechanisms are inapplicable for IS implementation due to operational com-
plexities.) Next, we elaborate on our approach on tailoring formal multiagent methods
for modeling industrial symbiosis as an institution and for developing an operationally
feasible transaction cost allocation mechanism.

We see multiagent industrial symbiosis as a practical manifestation of (well-designed)
industrial institutions and aim to model it using game-theoretic methods, able to cap-
ture both the physical and the institutional contributions of involved firms3. Such a
formal approach enables employing institutional economics methods for guaranteeing

2 To reason about the essence of transaction costs, we use the terminology of [24] and form our
perspective based on the categorization of physical and institutional facts and their correspond-
ing acts. Physical facts are about the valuation of a variable in the observable world (e.g., the
quantity of a resource or the distance between two firms) while institutional facts are about the
invisible world of concepts, definable in a given context (e.g., the fact that a resource is needed
or that a firm is powerful). Physical acts may change the value of physical facts while insti-
tutional acts affect the institutional facts. We abstract from the reasoning structures that relate
the two disjoint sets of facts/acts. See [34] for further elaborations on such a conceptualization
in the context of IS.

3 We use the term institution as a general reference to a collective of entities behaving in a
systematic manner, under an emerged or established coordination mechanism. Then a well-
designed institution is one in which the mechanism is engineered such that some (collectively
desirable) properties hold [23]. This would be distinguishable from the stronger notion of or-
ganization where an explicit representation of roles, organizational structures, and interaction
protocols [1,5] is needed.
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desirable properties at the collective level, e.g., see [36] for how a regulatory agent
can influence the feasibility of multiagent industrial symbiosis by means of incentive
engineering techniques.

In relation to the focus of this work, i.e., the collective transaction cost and its al-
location among the involved firms, the fairness property is concerned with capturing
the contributions of firms as a basis for cost allocation. While physical acts/facts (e.g.,
distance and quantifiable used energy) determine a base for computing fair allocation
of (physical) transportation/treatment costs, a fair allocation of the collective transac-
tion cost calls for a notion to capture the institutional contribution of agents as well. To
that end, we provide a formal account of the transaction cost economics in industrial
symbiosis (based on computational organization theory and industrial institutions). This
results in the introduction of the notion of industrial symbiosis index as a measure for
capturing the physical and institutional contribution of firms. In turn, this notion will be
a base for developing a fair and stable transaction cost allocation mechanism. Finally,
we elaborate on potential questions to be solved using the provided methodological
foundation.

2 Multiagent Industrial Symbiosis Institutions

To model IS institutions, we build upon a graphical representation of cooperative games—
also known as graphical games [19] or graph-restricted games [21]. Such a representa-
tion is a natural choice as it reflects the established relations among the firms and allows
the application of standard fair division methods for sharing the collective transaction
cost, among the members of the institution4. As a first step, we use graph-theoretic
notions to determine a realistic characteristic function for the game-theoretic repre-
sentation of industrial symbiosis. Then, adding an allocation mechanism results in our
formal notion of industrial symbiosis institution.

We recall basic game theoretic notions and the definition of graphical games based
on [20,6,21].

Cooperative Games: A (transferable utility) cooperative game on a finite set of
agents Γ is a tuple 〈Γ, f〉 where the game’s characteristic function f : 2Γ 7→ R is
such that f(∅) = 0.

Graphical Games: A graphical (transferable utility) cooperative game on a finite
set of agents/vertices Γ is a triple 〈Γ,W, f〉 where W is a |Γ | × |Γ | real-valued weight
matrix (representing the weights of edges between vertices in Γ ) and the game’s W -
restricted characteristic function fW : 2Γ 7→ R is such that f(∅) = 0. We say f is
restricted to W as it determines the value of any coalition S ⊆ Γ \ ∅ with respect to
W . Such a general formalization allows further tailoring in the context of industrial
symbiosis.

Allocation Mechanisms: For a given cooperative game G = 〈Γ, f〉, a (single-point)
allocation mechanismM maps a real-valued tupleM(G) ∈ R|Γ | to the pointed game.
The i-th element of the allocation tupleM(G) = 〈a1, a2, . . . , a|Γ |〉 is the share of agent

4 Through the course of this work, we may refer to firms as agents. This is to see any industrial
symbiosis institution as an environment that supports the collaborative interaction of a set of
autonomous decision-makers in charge of the involved firms.
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i ∈ Γ according toM and with respect to G. The term share can be interpreted—with
respect to the context—as the amount to be paid or gained by i. We later discuss various
properties that such a mechanism can hold or bring about.

To determine how the transaction cost can be allocated among the firms based on
their physical and institutional contributions, we take the graph that represents the es-
tablished symbiotic relations and obtained cost reductions as an input. (Note that the
reasoning about such a cost allocation takes place in a retrospective manner and after
the establishment of IS relations.) Given such a graph, we formulate a game-theoretical
representation that in turn results in inducing the physical as well as the institutional
contribution of individual firms.

Definition 1 (IS Graph). An IS graph is a tuple 〈Γ,W 〉, where Γ is the set of vertices,
representing |Γ | firms and W is the |Γ | × |Γ | matrix of positive real valued weights,
representing the cost reduction values. There exists a weighted undirected edge between
distinct firms i, j ∈ Γ , representing their established symbiotic relation, only if Wi,j 6=
0. Moreover, for any i ∈ Γ we have that

∑
j∈Γ Wi,j > 0 (connected) and thatWi,i = 0

(loop-freeness).

To have a concise and contextualized representation, we don’t require an explicit set
of edges as it could be derived based on W . The same holds for requiring the graph to
be loop-free and connected. Basically, loops and disconnected firms can be excluded as
in such cases the transaction cost (hence its allocation) is meaningless. This results in a
realistic representation in which unfeasible relations/edges (which otherwise could be
represented by negative or zero weights) are excluded. In the context of IS,Wi,j reflects
the realized net benefit—in terms of collectively obtained cost reductions—of the sym-
biotic relation between firms i and j on a given (quantity of) resource r. As discussed
in [35], such a collective benefit can be computed by deducing the total operational cost
of the relation (for treatment and transportation of r) from the total traditional costs
(for discharging r on the provider side of the relation and purchasing traditionally-used
inputs—substituted by r in the realized relation—on the receiver side). The W graph
would be the basis for formulating both the physical IS game (reflecting obtainable
benefits) and the institutional game (modeling the institutional power of firms in the
cluster).

Definition 2 (Physical IS Game). A graphical physical IS game is a triple 〈Γ,W, v〉,
where G = 〈Γ,W 〉 is an IS graph and for any group of firms S ⊆ Γ with |S| > 1, the
characteristic function v(S) is equal to 1

2

∑
i,j∈SWi,j . By convention, for any S with

|S| ≤ 1, v(S) = 0. Then in the normalized characteristic function, denoted by v̄, we
have that v̄(S) = v(S)/v(Γ ).

Example 1. To demonstrate the applicability of our approach, we use a case study
(adopted from a realistic industrial cluster5). See Figure 1 for an illustration of the
IS graph. In this graph, the value on each edge reflects the benefit (in terms of cost

5 The adopted case is one of the successful implementations of IS networks, investigated in a Eu-
ropean project. Due to confidentiality concerns, we omitted the company names and modified
some values.
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reductions) that resulted from the symbiotic relation, realized between the nodes that
it connects. While such values represent the physical dimension of an IS practice, the
structure of the graph is what we later use to formulate the institutional importance of
each node/firm.

1

2 3

4 5

6

4 2

8

2 6
4

8

Fig. 1. Connectivity graph of the involved firms in the IS cluster. Each node represents a firm
and the value on each edge represents the amount of cost reduction, obtained as a result of the
collaboration between the firms that the edge connects. Values are presented as utils. A util can
be interpreted as any form of transferable utility, e.g., a util may be equal to 100$.

The value of any singleton or empty coalition is 0 while for any S with |S| > 1, we
calculate the value by simply adding up the weights of the edges that connect any two
member of S. For instance, v({1, 2, 3, 4}) = 22 and v(Γ = {1, . . . , 6}) = 34. For the
same coalitions, the normalized values are respectively 22

34 and 34
34 . These normalized

values will be later employed for aggregation of the physical game with a game that
represents the institutional power of firms in such clusters.

Below, we present game theoretic properties of the physical IS games.

Proposition 1 (Properties). Let G = 〈Γ,W, v〉 be a physical IS game. Then: (1) for
any coalitions S ⊂ T , we have that v(S) ≤ v(T ) (monotonicity); (2) for any disjoint
coalitions S and T , we have that v(S∪T ) ≥ v(S)+v(T ) (super-additivity); (3) for any
coalitions S and T , we have that v(S∪T )+v(S∩T ) ≥ v(S)+v(T ) (convexity/super-
modularity).

Proof. (1) imagine a firm i in T \ S. If i is connected to a member of S or T \ S, it
contributes to the value of T . Otherwise, it has the added value of 0. In both cases, part
(1) is true. (2) if there exist a direct edge connecting a member of S to a member of
the disjoint coalition T , then v(S ∪ T ) increases; otherwise, it is equal to v(S) + v(T ),
thanks to non-negative weights. (3) In case the two sets are disjoint, it follows from part
(2). Otherwise, the two coalitions have nonempty intersection with either positive or
zero value. ut

These properties result in the following practical result that the collective value of
the grand coalition Γ can be shared among the firms such that no coalition has an
incentive to defect the collaboration.
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Theorem 1 (Nonempty Core). Let G = 〈Γ,W, v〉 be a physical IS game. Then there
exists an allocation mechanism M such that in M(G) = 〈a1, a2, . . . , a|Γ |〉, we have
(1)
∑
i∈Γ ai = v(Γ ) (Efficiency) and (2) for any S ⊆ Γ ,

∑
i∈S ai ≥ v(S) (Coalitional

Rationality).

Proof. The two clauses in this theorem axiomatize the notion of core-nonemptiness [20].
Then, the convexity property (in Proposition 1) in combination with the well-established
Bondareva-Shapley theorem [4,26] ensures the nonemptiness of the core, and accord-
ingly the existence of a mechanism to generate the allocation. ut

In addition to the physical game—based on which we can induce the physical con-
tributions that firms can bring about through a bilateral exchange of resources—the next
step is to present a basis for capturing the institutional contribution of firms. For such
a purpose, we cannot rely on cost reduction values (obtained thanks to operationalizing
the relations) basically because transaction costs are non-operational, but have an insti-
tutional nature. To that end, we employ the notion of closeness centrality adopted from
the literature on communication networks [2] to capture the institutional power of firms,
and as the basis for defining the characteristic function of the IS institutional game. In
a graph on the set of vertices Γ , the closeness centrality of a vertex i ∈ Γ , denoted by
C(i), is equal to |Γ |−1∑

j∈Γ\{i} d(i,j)
where the distance function d : Γ × Γ 7→ N+ returns

the shortest distance between i and j. More explicitly, d(i, j) = d(j, i) returns the min-
imum number of edges passed to reach j from i. Recalling the presented IS graph in
Figure 1, we have that C(1) = 5

7 , C(2) = C(3) = 5
8 , C(4) = 5

5 , and C(5) = C(6) = 5
9 .

Then based on this notions, we formulate the institutional IS game as follows.

Definition 3 (Institutional IS Game). A graphical institutional IS game is a triple
〈Γ,W, ι〉, where G = 〈Γ,W 〉 is an IS graph and for any group of firms S ⊆ Γ with
|S| > 0, the characteristic function ι(S) is equal to

∑
i∈S C(i). By convention, ι(∅) =

0. Then in the normalized characteristic function, denoted by ῑ, we have that ῑ(S) =
ι(S)/ι(Γ ).

Due to the additive formulation of ι, we have the following properties for institu-
tional IS games.

Proposition 2 (Properties). Let G = 〈Γ,W, ι〉 be an institutional IS game. Then G is
(1) monotonic and (2) convex/super-modular (defined analogously to Proposition 1).

Proof. Given that C(i) is non-negative for all i ∈ Γ and the formulation of ι(S) as the
summation of C(i) for all i ∈ S, monotonicity is trivial. For convexity, it suffices to
decompose ι(S ∪ T ). We have that ι(S ∪ T ) is equal to

∑
i∈S∪T C(i) =

∑
j∈S C(j) +∑

k∈T C(k)−∑l∈S∩T C(l), hence ι(S ∪T ) + ι(S ∩T ) = ι(S) + ι(T ), which satisfies
the convexity condition. ut

Immediate to this, we have the existence of an efficient and coalitionally rational
allocation mechanism for any institutional IS game (parallel to Theorem 1 for physical
IS games). Having both the physical and the institutional aspects of IS formalized in
the game-theoretic language, we present the aggregated IS game as the summation of
the normalized form of the two games.
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Definition 4 (IS Game). Let G = 〈Γ,W 〉 be an IS graph, GP = 〈Γ,W, v〉 a physical
IS game on G, and GI = 〈Γ,W, ι〉 an institutional IS game on G. Then the graphical
IS game is a triple 〈Γ,W, σ〉, such that for any group of firms S ⊆ Γ , the characteristic
function σ(S) is equal to v̄(S) + ῑ(S).

Then, as a corollary to Propositions 1 and 2 and Theorem 1, we immediately deduce
that any IS game preserves the properties presented in Proposition 2, hence has a non-
empty core (analogous to Theorem 1).

Corollary 1. For any IS game 〈Γ,W, σ〉, the set of efficient and coalitionally rational
allocation mechanisms is non-empty.

In other words: the normalized versions of both games satisfy the presented proper-
ties and linear aggregation preserves them. In some application domains, one may opt
for various forms of linear aggregations, i.e., to employ σ = αv̄+βῑ (for integer-valued
positive α and β). We later highlight that due to the linearity of the allocation mecha-
nism that we employ, our results remain valid in such a generalization of the problem.

Following the presented perspective in [35], an industrial symbiosis institution con-
sists of a group of firms, a structure that specifies the outcome of collaboration among
potential coalitions (in the group), and mechanism(s) responsible for coordinating the
institution. Such mechanisms are basically in charge to guarantee some desirable prop-
erties in the institution. In our case—in industrial symbiosis institutions—the aim could
be to ensure the stability of the institution (i.e., that no firm or group of firms has an
incentive to defect the collaboratively profitable institution), the fair allocation of the
collectively obtained benefits (such that the contribution of firms is reasonably reflected
in their individual shares), or ideally to bring about both fairness and stability. In a
general form, an industrial symbiosis institution is defined as:

Definition 5 (Industrial Symbiosis Institution). Let Γ be a set of firms, G an IS game
among firms in Γ , and M a set of value allocation mechanisms. Then an industrial
symbiosis institution is defined as triple I = 〈Γ,G,M〉.

In brief, this is to see an IS institution as an IS game under mechanisms in charge
of distributing the collective values. (Note that we do not fix the allocation mecha-
nism but take a set M.) This would be to distribute collectively obtainable benefits as
well as collective operational costs for establishment and maintenance of the institu-
tion. The latter category corresponds to the focus of this work for allocating transaction
costs in industrial symbiosis. In the next section, we present an allocation mechanism—
corresponding to the notion of Shapley value and the Myerson value in graph-restricted
games [25,21]—that satisfies both fairness and stability properties. We also elaborate
on its computational complexity and tractability results.

3 A Fair Transaction Cost Allocation Mechanism

The main idea behind the fair allocation of values is to take into account the contribu-
tion of each agent to the collaborative group [20]. In industrial symbiosis management
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platforms, the collective transaction cost reduces to costs for establishment and mainte-
nance of the framework—as a dynamic e-market environment6. This calls for dynamic
cost allocation methods, able to grasp the physical as well as institutional nature of
each agent’s contribution. Roughly speaking, following an initial payment for a basic
membership (to get involved in this e-market framework) it is expected that a “fair”
allocation of costs for further improvements, takes into account the contribution of each
participant—in terms of their role/function in the formed industrial network. Having
the game-theoretic formulation of an IS game (as an aggregation of the physical and
institutional IS games), any proportion of the transaction cost that oughts to be shared
among the firms—e.g., the total cost for updating the IT platform—can be distributed
based on each firm’s contribution to the IS game. A standard notion in computational
economics, capturing the contribution of each agent in a cooperative setting, is the Shap-
ley value [22,25]. Shapley’s allocation method uniquely satisfies the so called fairness
properties, which has high relevance for our domain of application in industrial organi-
zations. In IS games, as a combination of normalized physical and institutional games
among the firms, the Shapley value of a firm determines the extent of its power and
influence in the institution. This value would be defined as what we call the firm’s IS
index.

Definition 6 (IS Index). Let G = 〈Γ,W, σ〉 be an IS game. Then for any arbitrary
i ∈ Γ , the IS index, denoted by Φi(σ), is equal to

∑
S⊆Γ\{i}

|S|!(|Γ |−|S|−1)!
|Γ |! (σ(S ∪

{i})− σ(S)).

Due to the characteristics of σ (as a reflection of both the physical as well as in-
stitutional aspects of IS) the introduced notion of IS index is a measure that reflects
the power of a firm based on its connectivity to other firms in the network and also its
operational contributions by bringing about cost reductions. (We later show that due to
the graphical representation of the problem, the IS index can be formulated in a non-
factorial manner which leads to a low computational complexity result.) This index
forms a basis for allocating transaction costs such that a higher contribution determines
a higher share (i.e., “with more power comes more responsibility”). This approach re-
lies on the standard rationale in cooperative cost-sharing games that agents with higher
potentials ought to pay the larger share of the costs in the collaborative practice [20].
Accordingly, given an external cost function τ(Γ ) (equal to τ(S) for all S ⊆ Γ with
|S| ≥ 2), determining the (to be shared) transaction cost7 among the members of Γ , we
present the following transaction cost allocation mechanism for IS institutions.

6 There may exist other forms of individual transaction costs in such relations. For instance,
some investments to calibrate the production process to enable accepting a waste-based re-
source. However, as the equipment remains property of the firm, it is unreasonable to consider
such a cost as a collective (to be shared) transaction cost.

7 Such a cost may consist of initial platform development costs, ongoing IT infrastructure main-
tenance, or extra personnel recruitment costs for updating the platform. τ is defined in a func-
tional way merely to allow further extensions on dynamic formulations of the transaction cost
function, e.g., as a temporal function of some required resources for maintaining an IS infor-
mation system. In other words, τ(S) is undefined for |S| ≤ 1 and is equal to a given value
τ(Γ ) otherwise. Our main question is on how to distribute this collectively defined value.
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Definition 7 (TC Allocation for IS). Let G = 〈Γ,W, σ〉 be an IS game, Φi(σ) the
corresponding IS index for any arbitrary i ∈ Γ , and τ(Γ ) a given transaction cost value
for Γ . We define the cost share of agent i ∈ Γ as Ti(σ, τ) := Φi(σ)·τ(Γ )

σ(Γ ) . Allocation
T (σ, τ) = 〈a1, . . . , a|Γ |〉 with ai = Ti(σ, τ) denotes the TC allocation for IS game G
with respect to τ .

This allocation, tailored and contextualized for the specific class of structured, graph-
restricted industrial symbiosis games, (1) captures both the physical as well as the insti-
tutional aspects of this practice, (2) satisfies desirable fairness and stability properties
(to be discussed next), and (3) is computationally tractable thanks to the graphical rep-
resentation of the games (to be illustrated in Section 4). Having an industrial institution,
stability and fairness are two properties insurable by means of well-designed mecha-
nisms. In the case of the transaction cost allocation mechanism, stability is about (1)
sharing the exact amount of the cost and (2) sharing such that no firm can benefit by
defecting from the institution. On the other hand, fairness is a more complex property,
concerned with (1) the symmetric contribution of firms to the institution, (2) the share
of firms whose involvement are non-contributory, (3) the possibility to aggregate vari-
ous institutions, and finally (4) the sharing of the exact total cost. Below, we provide a
formal account of these properties in axiomatic forms—based on [20]—and investigate
whether they are valid in case of our suggested cost allocation mechanism.

Proposition 3 (Fairness Axioms). Let I = 〈Γ,G,M〉 be an industrial symbiosis in-
stitution where Γ is the set of firms and G = 〈Γ,W, σ〉 is the IS game. For any trans-
action cost τ(Γ ) > 0 we have that M = {T (σ, τ)} (Definition 7) guarantees the
following fairness axioms: (1) The collective transaction cost is efficiently allocated
among the firms, formally,

∑
i∈Γ Ti(σ, τ) = τ(Γ ) (Efficiency); (2) The identities of

the firms do not affect their share of the total transaction cost, formally, for i, j ∈ Γ ,
Ti(σ, τ) = Tj(σ, τ) if for all S ⊆ Γ \ {i, j} we have that σ(S ∪ {i}) = σ(S ∪ {j})
(Symmetry); (3) Any firm of which its contribution to any coalition is equal to its
individual value, pays a transaction cost share proportional to its individual value,
formally, for i ∈ Γ , Ti(σ, τ) = σ({i})·τ(Γ )

σ(Γ ) if for all S ⊆ Γ \ {i} we have that
σ(S ∪ {i}) = σ(S) + σ({i})(Dummy Player); (4) For two IS games, an agent’s trans-
action cost share in the aggregated game is equal to the summation of its share in each,
formally, given an industrial game G′ = 〈Γ,W ′, σ′〉 and a corresponding transaction
cost τ ′(Γ ) > 0, we have that Ti(σ + σ′, τ + τ ′) = Ti(σ, τ) + Ti(σ

′, τ ′) (Additivity).

Proof. Our notion of IS index measures the Shapley value of each firm i. Following the
linearity of this Shapley-based value, we have that the allocation mechanism preserves
all the four properties that the Shapley value uniquely possesses [20]. ut

In general, fairness and stability are orthogonal—an allocation might be fair but not
stable or the other way around. Below, we present an axiomatic account of stability and
show their validity for the presented transaction cost allocation method.

Proposition 4 (Stability Axioms). Let I = 〈Γ,G,M〉 be an industrial symbiosis insti-
tution where Γ is the set of firms and G = 〈Γ,W, σ〉 is the IS game. For any transaction
cost τ(Γ ) > 0 we have that M = {T (σ, τ)} (Definition 7) guarantees the following

BNAIC/BeneLearn 2020 333



Transaction Cost Allocation in Industrial Symbiosis: A Multiagent Systems Approach 11

stability axioms: (1) The collective transaction cost is efficiently allocated among the
firms, formally,

∑
i∈Γ Ti(σ, τ) = τ(Γ ) (Efficiency); (2) No subgroup faces an eco-

nomic incentive to deviate from the grand coalition and benefit by paying a lower share
of the transaction cost, formally, for any coalition S ⊆ Γ with |S| ≥ 2, we have that∑
i∈S Ti(σ, τ) ≤ τ(S) (Coalitional Rationality).

Proof. The first part is valid (using the previous proposition). For the second part, the
current formulation of the collective transaction cost requires that τ(S) = τ(Γ ) which
if combined with the first clause, immediately satisfies the claim. ut

In the generalized form, where the transaction cost function is defined for all po-
tential coalitions, the convexity of τ would be required for coalitional rationality. Note
that in case such a function was available in the first place, the mere problem on “how
to distribute the collective cost” would evaporate, as its solution requires a single call
to that function.

Thanks to the adoption of a Shapley-based index—and its linearity property—the
fairness and stability properties will be preserved in the presented aggregated form of
IS institutions and any general linear aggregation forms in which the importance of the
physical and institutional contributions are weighted.

Proposition 5 (Generalizability). Let I = 〈Γ,G,M〉 be an industrial symbiosis in-
stitution where σ = αv̄ + βῑ is the characteristic function of G in terms of v and ι,
the corresponding characteristic functions in the physical and institutional IS games,
respectively. We have that M = {T (σ, τ)} (Definition 7) guarantees fairness and sta-
bility in I.

4 Reductions Towards a Tractable Algorithm

Although the presented Shapley-based IS index has desirable properties, its standard
formulation leads to computationally expensive algorithms. Below, we present reduc-
tions that result in an alternative formulation for computing the IS index.

Lemma 1. In a graphical physical IS game GP = 〈Γ,W, v〉, for any i ∈ Γ we have
that

∑
S⊆Γ\{i}

|S|!(|Γ |−|S|−1)!
|Γ |! (v(S ∪ {i})− v(S)) =

∑
j∈Γ\{i}

Wi,j

2 .

Proof. Based on the formulation of v, the value of any singleton coalition S is zero
and for any coalition T with more than two members, the value is computed based on
the summation of values that bilateral relations (established within T ) bring about. In
other words, the average marginal contribution of any firm to any T with more than two
members is zero. The only set of coalitions to which a firm may have a contribution are
two-member coalitions for which we have the results of [33] that the middle point of the
core corresponds to the average marginal contribution. In our graph-restricted games,
this value is equal to the Myerson value [21] and is equal to half of the summation of
the values on the edges that are directly connected to i, i.e.,

∑
j∈Γ\{i}

Wi,j

2 . ut

Next we present a reduction for computing the contributions in the institutional
game.
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Lemma 2. In a graphical institutional IS game GI = 〈Γ,W, ι〉, for any i ∈ Γ we have
that

∑
S⊆Γ\{i}

|S|!(|Γ |−|S|−1)!
|Γ |! (ι(S ∪ {i})− ι(S)) = C(i).

Proof. In the institutional game, i’s contribution to any coalition is equal to its degree
of closeness centrality. Then the dummy player property implies the claim. ut

Based on these reductions, the transaction cost allocation is computationally tractable.

Theorem 2. Let I = 〈Γ,G,M〉 be an industrial symbiosis institution where Γ is the
set of firms and G = 〈Γ,W, σ〉 is the IS game. For any transaction cost τ(Γ ) > 0,
employing M = {T (σ, τ)} to compute the allocation T (σ, τ) = 〈a1, . . . , a|Γ |〉 is poly-
nomial in time and space.

Proof. We present a constructive proof by providing an algorithm (see Algorithm 1)
that generates the allocation, of which we verify its correctness and subsequently prove
the complexity claims.

Algorithm 1: TC Cost Allocation in IS
Input : IS Graph G = 〈Γ,W 〉 with Γ as the indexed set of firms and W as the

|Γ | × |Γ | weight matrix, Transaction Cost τ(Γ ).
1 % Initialization
2 n← |Γ |
3 Sum(G)← 1

2

∑
i,j∈Γ Wi,j

4 Cent(G)←∑
i∈Γ C(i)

5 T ← [T1, . . . , Tn] % n-Member Allocation Array
6 % Allocation
7 for i ∈ Γ do
8 Sum(i)← 0
9 for j ∈ Γ \ {i} do

10 Sum(i)← Sum(i) +
Wi,j
2

11 end
12 % Compute IS Index Φi(σ)

13 Φi(v̄)← Sum(i)
Sum(G)

14 Φi(ῑ)← C(i)
Cent(G)

15 Φi(σ)← Φi(v̄) + Φi(ῑ)
16 % Compute Individual Transaction Cost Ti(σ, τ)

17 Ti(σ, τ)← Φi(σ)·τ(Γ )
2

18 T [i]← Ti(σ, τ)

19 end
20 return T

Correctness: In Algorithm 1, for each firm i ∈ Γ , the IS index Φi(σ) is equal to the
Shapley value of i in the aggregated game (of the normalized physical and institutional
games). Thanks to the additivity property, this would be equal to the aggregation of
Shapley values in each game. Then, we rely on Lemma 1 and 2 for calculating the two
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values. Finally, for computing individual transaction costs, we have that σ(Γ ) = 2 as
it is equal to v(Γ )

v(Γ ) + ι(Γ )
ι(Γ ) . Space: The required matrix of weights (representing the set

of obtained cost reductions) is in O(n2) where n is the size of Γ . Time: For computing
the IS indices, we have O(n) on the big loop. Then in the physical game component,
Sum(i) is in O(n) (a pass on the i-th row in W ) and Sum(G) is in O(n2) (a pass
through the whole W ). For the institutional part, computing C(i) is reducible to finding
the shortest paths [14] which is well-known to be in O(n3) [15]. ut

To show the applicability of the developed method for allocating collective trans-
action costs among a cluster of firms Γ , we use the presented case in Example 1 and
assume a total value τ(Γ ) as the collective transaction cost, realized for an updating
round in Γ ’s industrial symbiosis information system. Assuming τ(Γ ) = 100 simply
results in percentage calculation for individual shares.

Following the steps in Algorithm 1, we have that Sum(G) = 34 and Cent(G) =
1027
252 . Then for each firm i ∈ {1, . . . , 6}, to compute Φi(v̄) (as the physical component

of Φi(σ)), we calculate the summation of the weights on all the edges connected to
i and divide it by Sum(G). Thus we have: Φ1(v̄) = 7

34 , Φ2(v̄) = 3
34 , Φ3(v̄) = 4

34 ,
Φ4(v̄) = 14

34 , Φ5(v̄) = 2
34 , Φ6(v̄) = 4

34 . For each firm i, adding C(i)
Cent(G) to Φi(v̄) results

in its IS index Φi(σ) = 13309
34918 ,

4218
17459 ,

9463
34918 ,

11473
17459 ,

3407
17459 ,

4434
17459 (respectively for firms 1

to 6). Finally, the transaction cost allocation T could be generated based on Φi(σ). We
have that: T1(σ, τ) = 19.06, T2(σ, τ) = 12.08, T3(σ, τ) = 13.55, T4(σ, τ) = 32.86,
T5(σ, τ) = 9.76, and T6(σ, τ) = 12.70.

Note that as we employ generic graph-/game-theoretical solution concepts as a basis
for the developed algorithm, our results are neither sensitive to the distribution of the
cost reduction values nor to the structure of the connectivity graph.

5 Concluding Remarks

Amid the institutional nature of transaction costs, to our knowledge, this work is the
first proposal that translates Searle’s well-established philosophy on institutional the-
ory for the context of IS, takes it into practice for fair transaction cost allocation, and
introduces a tractable algorithm for such a purpose. As a managerial decision support
tool, the presented algorithm can be integrated into smart IS contracting and manage-
ment frameworks to enable the automation of cost allocation procedures. For instance,
as a suggested business model for IS clusters, firms would be expected to pay an initial
membership fee and then be charged for further collective transaction costs based on the
presented method—reflecting their operational as well as institutional contributions. As
presented, this work has immediate applicability to support IS management by means
of providing a fair and stable TC allocation mechanism. In addition, it opens new re-
search directions. While we focused on generic IS, an interesting line of research is to
investigate sub-classes of IS with respect to their graphical structures. For instance, in
most bio-based IS practices, bio-refineries are in the center of the cluster due to their
crucial role as a resource treatment facility. This results in tree-like structures or clus-
ters of star graphs such that no two firms can implement an IS relation in the absence
of a refinery. This calls for methods tailored to capture such contextual properties. To
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this end, a combination of tree-like graphical games and dependence graphs [10] would
be a suggested formal foundation. Another line for future work is to develop gover-
nance frameworks for IS. This is to enable monitoring of the organizational behavior
and enforcing normatively desirable behaviors. For such a purpose, we aim to rely on
the literature on norm-aware coordination [29,12,9] and address problems related to
organizational characterization [11] of multiagent industrial symbiosis.
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Abstract. This paper demonstrates a swarm robotics construction sys-
tem where the intelligence that coordinates construction has been moved
from the robots to an advanced building material. This building mate-
rial is known as the Stigmergic Blocks and is capable of computation and
local communication. Using comprehensive simulation models based on
real hardware, we investigate approaches to improving the efficiency and
flexibility of a swarm robotics construction system.

Keywords: Swarm Robotics · Construction · Simulation.

1 Introduction

In swarm robotics, groups of robots coordinate their actions by communicating
with their neighbors and by sensing and modifying the surrounding environ-
ment [5,7]. These interactions between the robots and their environment can
result in the emergence of useful collective behaviors. It is the goal of swarm
robotics researchers to understand how the individual robots in these swarms
can be programmed so that these collective behaviors not only perform a useful
task but do so in a way that is generalizable, scalable, and robust to disturbances
such as robot failures. If these characteristics can be realized in robot swarms,
this approach to robotics may be well suited to automating construction in hos-
tile environments. As an example, environments with excessive radiation are too
dangerous for human workers and may result in high failure rates of robots and
their supporting positioning and communication infrastructure.

From an abstract perspective, the goal of construction is to arrange materials
in an environment into one or more structures with respect to a set of constraints.
For example, an ordering that ensures that the structure remains stable during
the entire building process. In the case of swarm robotics, these constraints can
be realized in terms of reactive rules that instruct robots to perform construc-
tion actions in response to environmental stimuli. If these stimuli are defined
in terms of the results of previous construction actions by other robots, we say
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that the robots are coordinating a construction task through stigmergic com-
munication [6,15]. This approach to construction has been applied by Allwright
et al. to build a staircase using a single robot and a stepped pyramid using
four robots [1,2] and by Jones and Matarić to build 2D structures from colored
blocks [8,9]. A significant challenge in this approach, however, is finding a set of
rules that unambiguously map all intermediate construction states to construc-
tion actions. The complexity of these sets of rules increases with the size of the
structure and has necessitated the use of offline algorithms to generate rule sets
in similar research [10]. Moreover, if we want to take advantage of the potential
scalability of swarm robotics systems by building in parallel, this complexity is
exacerbated since building in parallel imposes additional constraints on a rule
set to guarantee that the structure is always in a valid state [4,14].

To work around these limitations, researchers have supplemented stigmer-
gic communication in a variety of ways. For example, Werfel et al. [16,18] use
the concept of extended stigmergy in their work on multi-robot construction.
This approach leverages a robot’s or a block’s ability to localize itself to sim-
plify the construction rules. The work by Sugawara and Doi [12,13] takes another
approach and instead has the building materials guide the robots to where build-
ing material should be added. In this paper, we extend the work of Sugawara
and Doi by further investigating the potential advantages of having a building
material coordinate construction in a more capable multi-robot construction sys-
tem, namely, the one designed by Allwright et al. [3]. This construction system
consists of two components, a robot called the BuilderBot and a building mate-
rial, called the Stigmergic Block, which the BuilderBot assembles into structures
using its manipulator (see Fig. 1). We have developed plugins that provide com-
prehensive models of the BuilderBot and the Stigmergic Block for the ARGoS
simulator [11] and used them in the experimental work presented in this paper.

Fig. 1. The Swarm Robotics Construction System (SRoCS) consists of two compo-
nents, the BuilderBot robot and the Stigmergic Block building material.
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The general setup of our construction system involves having the robots use
computer vision to identify the configuration of a structure by observing the
location of its blocks and the colors of the LEDs on those blocks. The robots
then perform construction actions such as attaching another block in response to
certain configurations of the structure. In the experiments where we extend the
work of Sugawara and Doi, we use the building material’s peer-to-peer near-field
communication to allow messages to be exchanged between adjacent blocks. By
enabling the routing of messages through intermediate blocks, we enable one
block to monitor the structure and to communicate directly with the robots by
changing the colors of the LEDs on one or more blocks.

The remainder of this paper is organized as follows. In the following section,
we describe two classes of construction algorithms that we use to coordinate
construction. In Section 3, we present three experiments that demonstrate how
the efficiency and flexibility of the building process can be improved and how the
need to find complex sets of construction rules can be eliminated by enabling the
building material to coordinate its own assembly. Where possible, we compare
this approach with a standard approach where the construction is coordinated
exclusively by the robots. In Section 4, we discuss the tolerance of our system to
faults and the trade-offs that are made by moving the intelligence into the blocks.
We conclude the paper in Section 5 by suggesting several directions for future
work. The results presented in this paper and the tools required to reproduce
those results are open source and available as an OSF project [19].

2 Construction algorithms

In this paper, we use two classes of algorithms for coordinating construction. The
first class of algorithms, referred to as the standard algorithms, is a generalization
of the approach used by Allwright et al. [1] and is used for comparison with
the second class of algorithms. This second class of algorithms is called block
algorithms and represents the approach where the intelligence that coordinates
construction has been moved into the building material.

2.1 Standard algorithms

In the standard algorithms, construction is coordinated exclusively through stig-
mergic communication. The robots perform a random walk in their environment,
avoiding obstacles and searching for building material to attach to a structure.
The robots perform construction actions as a response to their observations of the
results of previous construction actions. In a standard algorithm, the robots are
provided with a look-up table that associates intermediate construction states
with construction actions. We assume here that the robots do not have access to
global information and would not be able to sense the complete state of larger
structures. Therefore, an entry in this look-up table often does not contain the
entire intermediate construction state, but rather only a partial representation
of that state. This partial representation corresponds to a configuration of blocks
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that can be reliably detected by a robot’s camera. The robots use this look-up
table and their sensor readings to detect patterns of blocks in their environment
and to execute the construction actions associated with them.

In our experiments with the standard algorithm, we allow robots to change
the colors of the LEDs on the Stigmergic Blocks just before attaching them to a
structure. Changing the LED colors on a Stigmergic Block enables a BuilderBot
to detect more complex patterns of blocks with its computer vision system more
reliably. After a BuilderBot has attached a Stigmergic Block to the structure,
however, the block’s LED colors are fixed.

2.2 Block algorithms

In a block algorithm, the intelligence that coordinates construction is mainly in
the building material. Similar to the standard algorithms, the robots perform a
random walk in the environment, avoiding obstacles and searching for building
material that can be added to an incomplete structure. In a block algorithm,
however, the robots do not have any internal representation of the structure
being built and rely on the building material for coordination.

In our system, construction starts with a single root Stigmergic Block in
the environment. While in our experiments we assign the role of the root block
statically, it would also be possible to have one or more robots assign this role to
one or more blocks dynamically as a result of environmental stimuli. The root
block in our current implementation of a block algorithm contains the entire
target structure encoded as a rooted tree. The root block decomposes this rooted
tree and sends only the required branches to its children using peer-to-peer near-
field communication (NFC). This process continues until all blocks currently in
the structure have received instructions from the root block. The non-root blocks
in the structure continuously send data back to their parents who then forward
the received data back to their parents as a single message until the root block
has been reached.

Upon receiving the messages from its children, the root block can monitor
construction progress, can detect incorrectly placed blocks, and can update the
colors of the LEDs on the Stigmergic Blocks in the structure, triggering further
construction actions by the BuilderBots. By controlling these LEDs, the root
block is able to coordinate the construction of the structure by telling nearby
robots where further blocks can be attached or should be removed.

Although this paper focuses primarily on results from simulation, we have
successfully implemented a block algorithm using the Stigmergic Blocks, whose
hardware is described in [3]. A video of this algorithm working on the hardware
(with blocks being attached and detached by hand) is available online as part
of the OSF project.4 In the following section, we describe our experiments in
simulation.

4 Video: hardware-demo.mp4 at https://osf.io/ve3za/

BNAIC/BeneLearn 2020 342



Swarm Construction Coordinated through the Building Material 5

3 Experiments

In this section, we present three experiments that we have completed using
the models of the BuilderBot and Stigmergic Block in the ARGoS simulator.
We model the behavior of the Stigmergic Block firmware in ARGoS using a
Lua controller that allows callbacks to be executed while messages are being
exchanged. This model reflects the actual hardware with the exception that the
firmware for the real block is written in C++ and is interrupt-driven, while
the code used in simulation is written in Lua and uses polling to detect if a
neighboring block is attempting to exchange messages. The control software for
the BuilderBot robot is also written in Lua and uses a behavior tree architecture.
An API for the BuilderBot has been developed, which provides a library of
behavior trees for obstacle avoidance, picking up unused blocks, and attaching
them to structures following rules that have been defined in terms of patterns
of blocks that can be detected by the robot’s computer vision system.

Our first experiment demonstrates a concept called dynamic construction
paths, where the root block is able to adjust the target structure as it is be-
ing built. In the second experiment, we show how the blocks can be used to
guide a robot towards a vacant construction site. Finally, the third experiment
demonstrates how using a block algorithm allows for a more flexible construction
process where robots can attach blocks to any vacant construction site in any or-
der. These experiments aim to demonstrate the potential advantages of moving
the intelligence that coordinates construction from the robots to the blocks.

3.1 Dynamic construction paths

In the standard algorithms, the Stigmergic Blocks are unable to communicate
with each other, they can only have their LEDs configured by a robot to display
a certain color before they are attached to a structure. The robots change the
color of the blocks as part of executing a construction action. The set of rules
that maps the intermediate construction states to these construction actions is
prepared offline and is loaded into the memory of the robots before an experi-
ment is started. In contrast, the block algorithms only require the root block to
have the internal representation of the structure, which can also be modified dur-
ing construction. This capability enables a feature called dynamic construction
paths. The concept of dynamic construction paths is realized when two or more
sequences of construction actions can be selected during construction according
to a condition that can be detected by the root block (or one of the blocks with
which it is in communication).

In this section, we set up an experiment with a structure that can be com-
pleted by following one of four different construction paths. This structure is
shown in Fig. 2. If we ignore the orientation of the structure, there are four
construction paths that advance the state of the structure from what is shown
in Fig. 2a to Fig. 2c. That is, we can attach blocks (i) left and then right, (ii)
right and then left, (iii) front and then back, or (iv) back and then front.
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In this experiment, the root block decides which path to follow by initially
indicating that a block can be attached to the top face of either the left, right,
front, or back block (Fig. 2a). Once a block has been attached to one of these
sites (and this information has propagated back to the root block), the root block
updates the illumination pattern of the structure to show nearby robots that
there is one valid construction site remaining (Fig. 2b). Following the attachment
of a block to this site, the root block updates the illumination pattern of the
structure one last time to indicate to nearby robots that the structure is complete
(Fig. 2c).

(a) (b) (c)

Fig. 2. Structure for demonstrating the use of a block algorithm to dynamically select
construction paths. The root block in the structure indicates to nearby robots when
and where a block can be attached to the structure by setting the color of a valid
construction site to yellow.

Results from simulation. The image on the left of Fig. 3 shows a robot
approaching the partially built structure. At this point, all four construction
paths are possible. After the robot has placed the block on the right-hand side
of the structure, the root block disables the LEDs on the right, front, and back
blocks to indicate that a block can now only be added on the left. The structure
is completed when the robot adds this last block to the structure, as shown on
the right of Fig. 3.

To investigate the impact of using more robots, we repeated this experiment
with two and four robots. Each of these configurations was repeated 25 times,
with the blocks and the robots starting in random positions. Each experiment
was automatically terminated when all required blocks have been deposited at
the building sites. The videos and the source code for these experiments are
available as part of the OSF project for this paper.5

Fig. 4 shows the distribution of the total experiment time with one, two, and
four BuilderBots. While there is a decrease in the time taken between one and

5 Videos: dcp-single-robot.mp4 and dcp-multiple-robots.mp4 at https://osf.io/
9562j/ and https://osf.io/4cpyh/
Source code: dcp-single-robot.zip and dcp-multiple-robots.zip at https://osf.
io/j2pqh/ and https://osf.io/nasf6/
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Fig. 3. Simulation results for the dynamic construction paths experiment. From left
to right: (i) a robot approaches a partially built structure and places a block on top of
one of the orange faces, (ii) the root block responds by selecting a construction path,
changing the illumination pattern, (iii) the robot places the final block in the correct
location to complete the structure.
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Fig. 4. Distribution of simulation time with different number of BuilderBots.

BNAIC/BeneLearn 2020 345



8 Y. Zheng et al.

two robots, the decrease between two and four robots is less significant. This
diminishing return on increasing the number of robots is commonly observed
in swarm robotics systems since adding more robots to a system increases the
likelihood of interference between those robots. From this data, we may conclude
that a swarm of two robots is optimal for this particular construction task in
this environment.

3.2 Guided construction

In this experiment, we show how a block algorithm can also be used to guide
a robot towards a construction site. This configuration involves using the illu-
mination pattern on the blocks to communicate the direction in which a robot
should go to reach a construction site. The motivation behind implementing this
mechanism is that, in the standard algorithms, the robot tends to spend a lot of
time performing a random walk before locating a construction site where it can
attach a block. The idea of using the building material to guide robots towards
a construction site is sometimes referred to as gradient following and has been
demonstrated before in a more abstract simulation by Werfel et al. [17].

For example, consider the partially built structure consisting of six blocks
arranged in a line in Fig. 5a. To complete this structure, a robot must place one
block on top of the left block and one block on top of the right block (Fig. 5b).
However, since the perspective of the robot is limited, it must discover these
attachment sites either through random walk or through gradient following.

In a standard algorithm, the colors of the LEDs on the blocks can not be
updated once they have been attached to a structure. For this reason, the robot
must rely on random walk to discover the possible attachment sites. Fig. 6 shows
how this construction may take place. The robots’ rule set in this case is that a
green block is to be attached to the top of a yellow block (unless a green block
has already been attached).

The construction speed for this structure can be increased using a block algo-
rithm that implements gradient following. In this case, the illumination pattern
of the structure is under the control of the root block and can be updated in re-
sponse to changes in the structure. Moreover, the robots now follow three rules:
(i) when a yellow block is detected the robot attaches a block to the top of it,
(ii) if red blocks are detected the robot biases its random walk behavior to the
right, (iii) if blue blocks are detected, the robot biases its random walk behavior
to the left. Fig. 7 shows an example of how this construction may take place. In
this example, a block is attached on top of the leftmost block, which is detected
by the root block. The root block updates the illumination pattern so that a
robot approaching the structure will turn to the right and find the remaining
construction site.

Results from simulation. To test our hypothesis that guided construction
with a block algorithm reduces the overall construction time with respect to
what is possible with a standard algorithm, we run experiments with two struc-
tures: a short line composed of six blocks and a long line made up of thirteen
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(a) (b)

Fig. 5. Structure for demonstrating guided construction. (a) The initial state of the
structure is a line consisting of six blocks. (b) The structure is completed by placing a
block at each end of the structure.

(a) (b) (c)

Fig. 6. Construction of the structure in Fig. 5 using a standard algorithm.

(a) (b) (c)

Fig. 7. Construction of the structure in Fig. 5 using a block algorithm to indicate
which way a robot should turn to reach a valid construction site.

Fig. 8. Simulation of building the structure in Fig. 5 with a block algorithm in the
ARGoS simulator. (a) The robot attaches a block to the top of the leftmost block. (b)
The illumination pattern is updated by the root block and robot searches to the right
for possible construction sites. (c) The robot attaches the last block to the top of the
rightmost block.
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blocks. We run each experiment for the two structures 25 times using both the
standard algorithm and the block algorithm. Fig. 8 contains three screenshots
of the construction of the short structure with a block algorithm in the ARGoS
simulator.

The box plot in Fig. 9 shows that, for both structures, the approach based on
the block algorithm performed better than the approach based on the standard
algorithm. From comparing the results for the two structures, it appears that
the decrease in construction time is related to the size of the structure, however,
further experiments with different types of structures and varying numbers of
robots are needed to get a proper insight into this relationship. The videos and
the source code for reproducing these experiments are available as part of the
OSF project.6
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Fig. 9. Distribution of the time taken to construct the short and long structures using
a standard algorithm and a block algorithm.

3.3 Flexible construction

Implementing construction in a swarm robotics system using a standard algo-
rithm puts a heavy burden on the designer to come up with a set of rules that
unambiguously maps each intermediate state of a structure to a construction
action. This burden is only made worse when we want to design rules that fa-
cilitate flexible construction. For example, consider the structure in Fig. 10. If
we wanted to build this structure using the standard algorithm, we could con-
strain the building process so that there is only one construction path that can
be followed, that is, there is exactly one construction action associated with
each intermediate state (Fig. 11). This constrained approach, however, may be

6 Videos: gc-standard-algorithm.mp4 and gc-block-algorithm.mp4 at https://osf.
io/5h9cs/ and https://osf.io/cdvty/
Source code: gc-standard-algorithm.zip and gc-block-algorithm.zip at https:
//osf.io/we754/ and https://osf.io/3znua/
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inefficient, since a robot could approach a possible construction site but be pro-
hibited to attach a block due to the constraints of the rule set. In contrast to the
constrained approach, if we allow a building process where a robot can attach
a block to any possible construction site at any time, the number of possible
intermediate states would increase significantly. Even for the simple structure in
Fig. 10, the number of intermediate states increases from three to seven. Finding
the unambiguous mappings between all of these intermediate states and the pos-
sible construction actions that advance the building process while keeping the
structure in a valid state is at least difficult and may in many cases be infeasible.

A block algorithm can solve this problem since the root block can detect
when and where one or more blocks have been added to (or removed from) a
structure and can update the illumination pattern on the blocks accordingly.
Furthermore, in the case of a block being attached to an incorrect site, the root
block can detect the incorrectly placed block and update the illumination pattern
so that nearby robots remove it, restoring the structure to a valid intermediate
state. In the final experiment for this paper, we demonstrate the construction of
the structure in Fig. 10 using the ARGoS simulator.

(a) (b)

Fig. 10. Candidate structure for flexible construction. (a) initial state of the structure,
(b) target state of the structure.

(a) (b) (c) (d)

Fig. 11. The structure in Fig. 10, can be built sequentially using a standard algorithm
to map the possible intermediate states of the structure (configurations of blocks) to
construction actions.
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Results from simulation. We have implemented the construction of the struc-
ture in Fig. 10 using a standard algorithm for sequential construction with a
single robot (Fig. 12) and with a block algorithm for construction of the same
structure with three robots in parallel. Videos of these experiments are available
online as part of our OSF project for this research.7

Fig. 12. Construction of the structure in Fig. 10 using a standard algorithm with a
single robot

4 Discussion

4.1 Fault Tolerance

In this section, we discuss two types of faults and how the standard and block
algorithms can recover from them. The first type of fault is when a robot attaches
a block to an incorrect site. This fault can be caused by a sensor error on the
behalf of the robot or can be due to unfortunate timing. For example, when two
or more robots attach blocks to valid attachment sites but where the combination
of those attachments puts the structure into an incorrect state. The second type
of fault is when a block stops working correctly. This fault may be the result of
a bad power source, corrupted firmware, or damaged hardware.

The standard algorithms can handle the first type of fault, where a block
has been incorrectly attached to a structure, at the cost of increasing the com-
plexity of the ruleset. That is, in addition to the rules necessary to advance the
construction, it would be possible to add rules that match the structure when

7 Videos: fc-standard-algorithm.mp4 and fc-block-algorithm.mp4 at https://osf.
io/ycxes/ and https://osf.io/tvhs2/
Source code: fc-standard-algorithm.zip and fc-block-algorithm.zip at https:
//osf.io/gf94r/ and https://osf.io/kjhu7/

BNAIC/BeneLearn 2020 350



Swarm Construction Coordinated through the Building Material 13

it is in an incorrect state and that trigger the removal of one or more blocks
until the structure is back in a state from which the construction can continue.
The second type of fault is difficult to solve with the standard algorithm and
relies on the robots being able to infer that a block is faulty, e.g., the LEDs are
displaying the wrong color. If the robots detect a faulty block in the structure,
it can be ignored or removed if it is disruptive to the building process.

For the block algorithms, the first type of fault, where a block has been
attached to an incorrect site, can be resolved since the root block can detect the
presence of this block by exchanging messages with other blocks in the structure
and can update the illumination pattern of the structure so that the robots
remove it. A demonstration of a block algorithm recovering from this fault has
been implemented for the dynamic construction paths discussed in Section 3.1.
A video of the recovery from this fault is available as part of the OSF project
along with the source code to reproduce the experiment8.

The second type of failure, that is, if the block has (i) a bad power source,
(ii) corrupted firmware, or (iii) damaged hardware, is more problematic for block
algorithms than standard algorithms since the block algorithms currently rely on
the accurate propagation of information through the structure. In some cases, it
may be possible to work around these malfunctioning blocks by communicating
through other blocks, however, thin sections of the structure where there is only
a single path through which information can flow remain problematic and will
require further research.

4.2 Trade-offs

Although the experiments in this paper show that the block algorithms can
make construction more flexible and efficient and can put less of a burden on
the system designer, there are some important trade-offs that must be addressed.
The first trade-off is the increase in complexity of the building materials, which
can no longer be passive but now have to be capable of computation and local
communication, which increases the cost and necessitates a source of power.
This trade-off, however, is not so unreasonable considering recent developments
in smart label technology where NFC communication, small micro-controllers,
and lithium batteries can be combined into cheap flexible tags that could be
attached to building materials in an automated construction system.

The second trade-off that must be considered is that a block algorithm uses a
root block in the structure to coordinate its construction, introducing a form of
centralized control which may be undesirable since (i) it is a potential bottleneck
in terms of computational and communication throughput and (ii) it creates a
single point of failure in the system. We believe, however, that it is feasible to use
centralized control in a swarm robotics construction system without negating the
benefits of decentralized control as long as the following conditions can be met:
(i) the role of the centralized controller can be transferred to another unit in the

8 Video: dcp-fault-tolerance.mp4 at https://osf.io/mvhk6/
Source code: dcp-fault-tolerance.zip at https://osf.io/scm7q/
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case of hardware failure and (ii) the centralized controller can partially delegate
its authority to other units so that it is not a computational/communication
bottleneck in the system.

5 Conclusion

In this paper, we demonstrated the advantages of moving the intelligence that
coordinates a building process in a swarm robotics construction system from the
robots and into the building material. We referred to these algorithms as block
algorithms and compared them against solutions where the intelligence that
coordinates construction was in the robots, namely the standard algorithms.

In future work, we intend to investigate the scalability and fault tolerance
of the block algorithms and to validate the experiments presented in this paper
using real robots.
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State Aggregation and Deep Reinforcement
Learning for Knapsack Problem

Reza Refaei Afshar Yingqian Zhang, Murat Firat, and Uzay Kaymak

Eindhoven University of Technology, Eindhoven, Netherlands

1 Introduction

In [1], we develop a state aggregation method for solving knapsack problems
(KP) with deep reinforcement learning (DRL). Although handcrafted heuristics
work well in many COPs, they mostly rely on the nature of problems and they
need to be revised for different problem statements. In this paper, we aim to
learn and improve the handcrafted heuristics to improve the quality of the so-
lutions. We study knapsack problem (KP), and we propose a state aggregation
method to shrink state space in order to solve larger KP instances. A tabular
RL method is used to learn the best aggregation strategy for each item. This
aggregated features reduces the state space by reducing the number of unique
values. Then, Advantage Actor Critic (A2C) algorithm as a powerful method of
Deep Reinforcement Learning (DRL) is employed to learn the policy of selecting
items. The proposed method solves KP by successive item selections and placing
them in the knapsack, each is done by following a greedy or softmax algorithm
on the output of the policy network. The experimental results show that the
method obtains close to optimal solutions for three different types of instances
with up to 500 items

2 Proposed method

Figure 1 shows the overview of our method. It consists of two components.
Algorithm 1 includes a formulation of KP to MDP, which is solved using a
DRL approach. Algorithm 2 is a state aggregation method, which learns an
aggregation policy to discretize states that serve as inputs to DRL.

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

…
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6
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Algorithm 1Algorithm 2

Fig. 1: The overview of the KP solver.

DRL knapsack Solver: In
order to solve the 0-1 KP, DRL
is used to derive a policy through
that the items are sequentially
added to the solution. The states,
actions and rewards of DRL mod-
eling are as follows. States s(P ): A
complete set of information of an
instance containing the values and
the weights of items and capacity
of knapsack. Actions: There are N
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Table 1: Results of different algorithms and datasets of M = 1000 instances.
Dataset Method N V al #opt V alopt

Greedy 500 111.68 204
FI DRL w/o aggregation 500 111.63 64 111.73

DRL w/ aggregation 500 111.70 261

Greedy 500 80779.23 25
HI DRL w/o aggregation 500 81022.60 71 81103.99

DRL w/ aggregation 500 81064.99 136

actions, each corresponding to select one item. Reward Function: The reward
function contains three terms: a positive reward for successfully selecting an
item; A large negative reward when the item does not exist (in case when the
number of items is lower than the selected item id); and a small negative number
when an item is heavier than the remaining capacity of knapsack. Employing
these definitions of states, actions and rewards, the A2C algorithm is used for
training policy and value DNNs.

State Aggregation: As the number of items increases, the state space grows
up exponentially and this affects the performance of function approximation
with DNN. In order to shrink the state space and boost the method to have the
capability of solving large problem instances, a new state embedding is derived
by state aggregation. Specifically, the problem is to find a certain number of
split points on the values of items and transform the values into integers using
these split points. We opt for reinforcement learning to tackle this problem and
Q-Learning is used to find the optimal number of split points for each item value.

3 Experiments

The proposed DRL with aggregation algorithm is compared with (1) greedy
algorithm, (2) DRL without aggregation (3) DRL approach with pointer network
(4) Pointer Network and Supervised learning method. We use three different
types of instances in the experiments: Random Instances (RI), Fixed capacity
Instances (FI) and Hard Instances (HI). The DNNs consist of two layers of
64 nodes. We evaluate the performance based on several metrics. The Average
Value of Solutions (V al) and Number of optimally solved instances (#opt) for FI
and HI are shown in table 1. The results show that the proposed methods, with
or without aggregation, outperform the greedy algorithm. As shown in table 1,
the state aggregation strategy improves the solutions of greedy algorithm for
large instances. For FI instances, our method finds close to optimal solutions for
instances up to 500 items. In the literature, the authors did not test instances
with more than 200 items.
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Significant progress in algorithmic music generation has recently resulted
from the widespread application of new and powerful methods based on deep
generative models, letting this class of data-driven approaches gradually take
over more traditional rule-based or probabilistic techniques. The musical quality
of the results is still not always sufficient to enable a widespread adoption in re-
alistic professional scenarios. The generation system we present in [1], introduces
novelties across three dimensions: the type of data structures that are used to
describe MIDI patterns, the nature of the generative learning models, and the
strategy used to produce a whole musical piece, whose combination allows us
to generate meaningful and professionally usable streams of music. We call our
system CONLON, for Channeled Onset of Notes and Length Of Notes, and in
honor of Conlon Nancarrow (1912–1997), a pioneer of piano roll compositions.

We introduce a novel pianoroll-like pattern description, PRC , that stores ve-
locities and durations in two separate channels. Our description does not suffer
the ambiguity between long notes and repeated occurrences of the same note
that is inherent in binary piano roll descriptions (PR). PRC is completely loss-
less: a quantized MIDI pattern transformed into the corresponding PRC tensor
can be recovered exactly. Additionally, it can be perceptually more robust to
reconstruction errors. A further advantage is that all the information about a
note is local, whereas in the case of PR, a convolutional network requires a wide
receptive field to infer the note duration.

As a generative model, we experiment with Wasserstein autoencoders (WAE) [4],
a type of autoencoder that is less subject to the “blurriness” problem typically
associated with variational autoencoders (VAE), which manifests itself in the
case of music patterns as large clusters of notes being played together and some-
times in swarms of short notes that are never present in the training data.
WAEs avoid this problem by pushing the expectation inside the divergence, i.e.,
penalizing a divergence D between the prior qz and the aggregated posterior
qz(z) = Ep q(z|x), where p is the data distribution. They thus minimize, with
respect to the parameters of the decoder, the quantity

min
q(z|x)

Ep Eq(z|x) c(x,G(z)) + λD(qz, pz) (1)

BNAIC/BeneLearn 2020 357



2 L. Angioloni et al.

where c is a reconstruction loss and λ a hyperparameter to be fixed. In all our
experiments we employed the Maximum Mean Discrepancy (MMD) for D and a
Gaussian prior for pq, and we structured the encoder and the decoder as in the
DCGAN [3] architecture.

Our generation strategy is similar to interpolation, where MIDI pseudo-songs
are obtained by concatenating patterns decoded from smooth trajectories in the
embedding space, but we formulate it as an optimization problem for exploring
the autoencoder latent space in a way that prevents abrupt transitions between
consecutively generated patterns, as well as regions with little variation. The
optimal trajectories are computed as the solution of a widest-path problem.

We tested CONLON on three datasets. ASF-4 is a set of 910 patterns of
four bars in three genres: acid jazz, soul and funk. Each pattern has 4 tracks
associated with a simple electro-acoustic quartet: drums, bass, Rhodes piano,
and Hammond organ. HP-10 is a set of 968 patterns of four bars in two gen-
res: high-pop and progressive trance. Each pattern has 10 tracks associated with
the following instrument set: drums, bass, Rhodes, brass-synth, choir, dark-pad,
guitar, lead, pad, and strings. Both ASF-4 and HP-10 have been especially com-
posed by two professional musicians for this study4. The third dataset was LPD-5
(cleansed version) derived from the Lakh MIDI dataset by Dong et al. [2].

To validate the CONLON approach, we conducted three listening experi-
ments with a group of 69 musicians. These experiments showed that musicians
find pseudo-songs generated with WAEs and PRC descriptions more useable in
music production than pseudo-songs generated with the MuseGAN model [2] and
PR descriptions, find pseudo-songs generated by WAEs with PRC descriptions
more useable than pseudo-songs generated by the same WAE with PR descrip-
tions, and find the development over time of pseudo-songs generated with WAEs
and PRC description coherent rather than incoherent (with respect to Harmony,
Rhythm, Melody, and Interplay of instruments).
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As is generally true for computer science, reinforcement learning (RL) curric-
ula are mainly composed of two parts: theory, and hands on experience. The lat-
ter, in particular, often requires the students to implement the most fundamental
algorithms from scratch. Students can then test these on toy examples in order
to gain an intuitive understanding of the underlying mechanisms, e.g. value func-
tions, belief updates, etc. While useful, this approach can be time-consuming,
which prevents students from experimenting with less known or harder to im-
plement methods and comparing their characteristics directly. To counteract
this, providing a suite of already implemented methods can help to significantly
expand the experience of a novice.

With the recent surge of interest in the field of deep learning, there are
numerous resources for implementing and testing deep methods today. However,
we argue that deep methods are not optimal for (human) learning, as it is difficult
to inspect their internals and get an intuitive understanding of what is happening
under the hood. Unfortunately, relatively few libraries organize discrete literature
that can be used for this purpose [7, 6, 4].

AI-Toolbox[3] is a C++\Python library that tries to fill this gap. It is a
research-grade repository of more than 40 implementations of several algorithms
for single-agent and multi-agent bandit, MDP and POMDP algorithms, and also
provides a large number of utility classes and functions available to implement
additional methods. AI-Toolbox is one of the largest frameworks of its type
available online, and it is free software.

AI-Toolbox is battle-tested, and has been referenced by numerous pub-
lications [9, 2, 8, 5, 1]. The goals of this framework are, in descending order of
importance: usability and documentation, ease of modification, clarity and per-
formance. These goals align well with student experimentation and discovery.

AI-Toolbox extensive documentation covers every public class, method and
utility. The library provides a uniform, consistent interface throughout, empha-
sizing patterns across algorithms that might not otherwise be noticed. The code
is written in C++17, taking advantage of all features of the language, and is built
following modern standard practices, i.e. unit tests, continuous integration, sep-
arate concerns, etc.

To give a brief example of how easy it is to use the library, this is all the code
needed to use the Incremental Pruning algorithm to solve the known POMDP
? Supported by FWO (Fonds Wetenschappelijk Onderzoek), grant #1SA2820N, and
by the �Onderzoeksprogramma Arti�ciële Intelligentie (AI) Vlaanderen� programme.
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tiger problem, and initialize a policy with the resulting value function. The policy
can then be easily used to act in the environment; for example, to control a robot.
// The model can be any custom class that respects a 10-method interface.
// In this case it is a problem provided by the toolbox.
auto model = AIToolbox::POMDP::makeTigerProblem();
unsigned horizon = 10; // The horizon of the solution.

// The 0.0 is the convergence parameter. It gives a way to stop the
// computation if the policy has converged before the horizon.
AIToolbox::POMDP::IncrementalPruning solver(horizon, 0.0);

// Solve the model and obtain the optimal value function.
auto [bound, valueFunction] = solver(model);

// We create a policy from the solution to compute the agent’s actions.
// The parameters are the size of the model (SxAxO), and the value function
// obtained from solving the problem.
AIToolbox::POMDP::Policy policy(2, 3, 2, valueFunction);
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1 Introduction

Deep learning [4] is a promising avenue of research into the automated extraction
of complex data representations at high levels of abstraction. Such algorithms de-
velop layered, hierarchical learning architectures of data representations, where
higher-level features are defined in terms of lower-level features. Pooling layers
[4, 6] provide an approach to downsampling feature maps by summarizing the
presence of features in patches of the feature map. They focus on data with a
well-defined structure where the term feature neighborhood makes sense.

However, while it is interesting to recognize faces, or classify objects in im-
ages and videos, the truth is that there are other domains in which the data do
not have a topological organization [7, 8]. For example, when using numerical
descriptors to encode a protein, it might happen that two distant positions in
the sequence are close to each other in the tri-dimensional space. That behavior
could not be captured with local pooling methods. In those cases, using standard
pooling operators might have little sense, even when the problem at hand could
benefit significantly from a deep learning solution. Besides, although these opera-
tors are able to deal with both single-label and multi-label classification (MLC)
problems [3], they are specifically aimed at reducing feature space. However,
in the case of multi-label data, we can benefit significantly from implementing
similar operations on the label space.

Hence, we propose a deep neural architecture to extract high-level features
and labels in MLC problems [1, 2]. This approach, unlike the classic use of pool-
ing, does not pool pixels but problem features or labels. The following sections
provide a brief description of our proposal.

2 Bidirectional Deep Neural Network

This architecture, proposed in [1], is composed of several stacked association-
based pooling layers, which are built starting from the features and the labels
at the same time. The first pooling layer is composed of neurons denoting the
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problem features and labels, whereas in deeper pooling layers the neurons denote
high-level features and labels extracted during the construction process. Each
pooling layer uses a function that detects pairs of highly associated neurons
(i.e. they fulfill a certain association threshold) while performing an aggregation
operation to derive the pooled neurons. We use Pearson’s correlation to estimate
the association degree between two neurons. We compute the correlation matrix
among features and labels, and derive the degree of association of the pooled
neurons from the degree of association between each pair of neurons in the
previous layer. The pooling process is repeated over aggregated features and
labels until a maximum number of pooling layers is reached.

Once the high-level features and labels are extracted from the dataset, they
are connected together with one or several hidden processing layers. These hidden
layers are equipped with either ReLU, sigmoid or hyperbolic tangent transfer
functions, therefore conferring the neural system with prediction capabilities.
Finally, a decoding process [5] is performed, which connects the high-level labels
to the original ones by means of one or more hidden processing layers.

3 Computing the degree of association among neurons
from granulation entropy

In [2], we present a new method that replaces the correlation measure (i.e. that
quantifies the association between two neurons) with another one that computes
the entropy in the information granules that are generated from two features or
labels. Unlike the pooling approach proposed in [1], this proposal does not require
that either the features or labels have a certain degree of correlation with each
other. The rationale behind the proposal suggests that two features (or labels)
can be associated if the granulations generated from them have equal entropy
[9]. Therefore, the proposal consists in obtaining a universe granulation, where
each feature (or label) defines an indiscernibility relation, and the information
granules are the set of indiscernible objects with respect to the feature (or label)
under consideration. In this way, it is verified if the coverings (or partitions)
generated by two features (or labels) induce similar entropy values.

4 Concluding Remarks

The numerical simulations on several MLC datasets show a significant reduction
in the number of problem features and labels (i.e. a reduction of up to 96%
and 87%, respectively), without affecting network’s discriminatory capability.
Having a smaller neural system implies that the training time is smaller when
compared with a model that uses the full set of features and labels. Despite of
the relatively good results reported by the model in [1], the function used to
quantify the association between problem variables does not seem to be suitable
for datasets having poor correlation among their features or labels. In order to
mitigate this, a variant based on granulation entropy in [2] is proposed.
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1 Introduction

Multivariate time series are ubiquitous in various domains of science [2, 6, 7] and
much of the methodology for time-series analysis assumes that signals are mea-
sured systematically at fixed time intervals. However, much real-world data can
be sporadic (i.e., the signals are sampled irregularly and not all signals are mea-
sured each time). A typical example is patient measurements, which are taken
when the patient comes for a visit (e.g., sometimes skipping an appointment)
and where not every measurement is taken at every visit. Modeling then becomes
challenging as such data violates the main assumptions underlying traditional
machine learning methods (such as recurrent neural networks).

Recently, the Neural Ordinary Di↵erential Equation (ODE) model [1] opened
the way for a novel, continuous representation of neural networks. As time is
intrinsically continuous, this framework is particularly attractive for time-series
analysis. It opens the perspective of tackling the issue of irregular sampling in a
natural fashion, by integrating the dynamics over whatever time interval needed.
Up to now however, such ODE dynamics have been limited to the continuous
generation of observations (e.g., decoders in variational auto-encoders (VAEs)
[4] or normalizing flows [5]).

Instead of the encoder-decoder architecture where the ODE part is decoupled
from the input processing, we introduce a tight integration by interleaving the
ODE and the input processing steps. Conceptually, this allows us to drive the
dynamics of the ODE directly by the incoming sporadic inputs. To this end, we
propose (1) a continuous time version of the Gated Recurrent Unit and (2) a
Bayesian update network that processes the sporadic observations. We combine
these two ideas to form the GRU-ODE-Bayes method.

The tight coupling between observation processing and ODE dynamics allows
the proposed method to model fine-grained nonlinear dynamical interactions be-
tween the variables. As illustrated in Figure 1, GRU-ODE-Bayes can (1) quickly
infer the unknown parameters of the underlying stochastic process and (2) learn
the correlation between its variables (red arrows in Figure 1). In contrast, the
encoder-decoder based method NeuralODE-VAE proposed by [1] captures the

? Equal contribution
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Fig. 1. Comparison of GRU-ODE-Bayes and NeuralODE-VAE on a 2D Ornstein-
Uhlenbeck process with highly correlated Wiener processes (⇢ = 0.99). Dots are the
values of the actual underlying process (dotted lines) from which the sporadic obser-
vations are obtained. Solid lines and shaded areas are the inferred means and 95%
confidence intervals. Note the smaller errors and smaller variance of GRU-ODE-Bayes
vs. NeuralODE-VAE. Note also that GRU-ODE-Bayes can infer that a jump in one
variable also implies a jump in the other unobserved one (red arrows). Similarly, it also
learns the reduction of variance resulting from a new incoming observation.

general structure of the process without being able to recover detailed interac-
tions between the variables.

Our model enjoys important theoretical properties. We frame our analysis in
a general way by considering that observations follow the dynamics driven by a
stochastic di↵erential equation (SDE). In this paper, we show that GRU-ODE-
Bayes can exactly represent the corresponding Fokker-Planck dynamics in the
special case of the Ornstein-Uhlenbeck process, as well as in generalized versions
of it.

We further perform an empirical evaluation and show that our method out-
performs the state of the art on healthcare and climate data. In healthcare, we
used electronic health records (EHR) from the MIMIC-III clinical database [3],
which contains EHR for more than 60,000 critical care patients. We select a
subset of 21,250 patients with sufficient observations and extract 96 di↵erent
longitudinal real-valued measurements over a period of 48 hours after patient
admission. We predicted the next 3 vitals measurements of intensive care pa-
tients after 36 hours observations. For the climate application, we used the pub-
licly available United State Historical Climatology Network (USHCN) daily data
set ushcn, which contains measurements of 5 climate variables (daily tempera-
tures, precipitation, and snow) over 150 years for 1,218 meteorological stations
scattered over the United States. To showcase the capability of our approach, we
artificially downsampled the available data and predicted future measurements
based on 3 years observations.
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1 Introduction

Fuzzy Cognitive Maps (FCMs) [4,5] are recurrent neural networks for modeling
complex systems. Existing theoretical studies on FCMs are mainly devoted to
convergence issues, commonly covering the existence and uniqueness of fixed
points [1,3,6]. Other results reported in [7–10] address the convergence of FCM
models used in prediction/classification scenarios.

Concerning the theoretical analysis of FCMs’ dynamics, we summarize our
paper Unveiling the Dynamic Behavior of Fuzzy Cognitive Maps [2]. First, we
introduce several definitions and theorems that allow studying the dynamic be-
havior of FCMs equipped with monotonically increasing functions bounded into
non-negative intervals. The strong version of our theorem proves that the state
space of an FCM shrinks infinitely and converges to a so-called limit state space,
which could be a fixed-point attractor in some cases. This allows envisaging, to
some extent, the FCM model’s behavior before the inference stage. As a second
contribution, we explore the covering and proximity of feasible activation spaces,
which help explain why FCMs sometimes perform poorly when solving complex
prediction problems. In other words, we show why we should not expect im-
pressive prediction rates when the model has low covering values as the FCM
feasible state space is small.

2 Shrink Functions and State Space Estimation
in FCM-based Models

We define F as the set of all monotonically increasing functions bounded into
non-negative intervals. Also, let fi ∈ F be the transfer function used in the
activation process of neuron Ci in the FCM. In [2], we refer to an F -function as
any function belonging to F .

Let HW and HT be functions that take an FCM-based modelM and a feasi-
ble state space at the t-th iteration S(t) for this map and return a feasible state
space at the (t + 1)-th iteration S(t+1) for the same map. While HW uses the
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weight matrix W of M to calculate a feasible state space for the (t+ 1)-th iter-
ation, HT uses the FCM’s topology only. Based upon estimated bounds for the
successive activation values and from the monotonically increasing property of
fi ∈ F , we assert that over the same FCM, these two shrink functions transform
feasible state spaces into state spaces which are also feasible.

To show that FCMs are not completely unpredictable, we propose two theo-
rems as the pillars of our state-space estimation: the Weak Shrinking State Space
(WSSS) and the Strong Shrinking State Space (SSSS). The former asserts that
the state spaces shrink from one iteration to the next one, although it is possible
that S(t) = S(t+1), which would imply that S(t) = S(t+k) ∀k ∈ N. So, the state
spaces may not shrink forever. The latter only varies in the sense that transfer
functions are now bounded into open intervals. This means that the state space
bounds are never reachable and hence, the state spaces will shrink forever and
they will have a limit. The limit state space of M is S(∞) = limt→∞ S(t), when
state spaces are iteratively calculated using either shrink function HT or HW .
According to simulations, S(∞) often contains a single point.

3 Covering and Proximity of FCM Models

In this section, we discuss two evaluation measures that help understand the
properties of FCM-based systems. The covering quantifies the proportion of the
induced activation space that is reachable by the neuron’s activation values and
the proximity measures the mean relative distance of neuron’s activation values
to the feasible activation spaces.

The results confirmed that better predictions for FCMs’ behavior arise work-
ing with stable maps and their weight sets. Small covering values are evidence
of the reduced representativeness of induced activation space, but sometimes
we desire high covering values to represent the most diverse sets of outputs.
As illustrated, such measures have a straightforward connection with the SSSS
Theorem. More importantly, they help explain why FCMs sometimes perform
poorly when applied to prediction problems that demand high accuracy.

4 Concluding Remarks

In [2], we have introduced a theoretical formalism consisting of definitions and
theorems to unveil the dynamical behavior of FCMs equipped with transfer F -
functions, from the perspective of their state spaces.

The SSSS Theorem enunciated in this paper ensures that the feasible state
space of the targeted FCMs shrinks infinitely, yet the system converges to its
limit state space. As shown in the experiments, approximating an FCM’s limit
state space is useful to predict fixed-point attractors. Likewise, we illustrated
that the covering of feasible activation spaces is often poor and irregular for
FCMs with reduced network topologies. This knowledge could be injected into
the learning procedure in order to improve network’s performance.
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1 Introduction

The key difficulty of cooperative, decentralized planning lies in making accurate pre-
dictions about the behavior of one’s teammates. In this paper we introduce a planning
method of Alternating maximization with Behavioural Cloning (ABC) – a trainable on-
line decentralized planning algorithm based on Monte Carlo Tree Search (MCTS), com-
bined with models of teammates learned from previous episodic runs. Our algorithm
relies on the idea of alternating maximization, where agents adapt their models one at a
time in round-robin manner. Under the assumption of perfect policy cloning, and with
a sufficient amount of Monte Carlo samples, successive iterations of our method are
guaranteed to improve joint policies, and eventually converge.

2 The ABC method

Our planning algorithm is suitable for fully observable cooperative environments known
as Multi-agent Markov Decision Processes (MMDPs). The setting is fully cooperative,
and each agent is assumed to receive the same reward at each execution step of an
episodic run. The planning is performed in a decentralized manner, and without com-
munication between the agents. Each agent is equipped with an instance of the MCTS
algorithm, a set of models of policies of its teammates, and a simulator of the environ-
ment. At each episodic step, each agent samples the simulator and teammate models to
construct the tree of possible futures, estimate expected episodic rewards for individual
actions, and choose the one which appears most beneficial.

Initially, agents are equipped with heuristic models of their teammates. They are as-
sumed to act in a given environment repeatedly, for some large amount of episodic runs
– either from simulation, or actual execution. Then, the agents use these experiences to
learn to predict the actions of their colleagues. More specifically, every N episodic runs
are grouped into one generation, and after each generation, the state-action episodic
data, is used to train new agent models represented by convolutional neural networks;
these are in turn provided to one of the agents, as the updated teammate models. At each
generation only one agent updates its teammate models, which stabilizes training and,
under certain assumptions on policy cloning, causes rewards to increase monotonically
across the generations.
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Fig. 1: Results from the factory floor experiment, in order of increasing difficulty. Left: two robots
and preallocated tasks, middle: four robots and preallocated tasks, right: four robots and randomly
appearing tasks. The baseline is the decentralized MCTS planning algorithm, introduced in [3].

3 Experiments

We test the efficiency of the algorithm by performing experiments in the spatial task
allocation environment introduced in [2]. The domain consists of a gridworld-like pla-
nar map, where each position can be occupied by (cleaning) robots and tasks (e.g. lit-
ter). Each robot can perform either a movement action, which shifts the position of the
robot accordingly, or a cleaning action, which removes one task at the current position.
Attempted actions may succeed or not, according to predefined probabilities. Experi-
ments show the effectiveness of the method, as an improvement across generations is
observed, see Figure 1.
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1 Introduction

Mining data collected from continuous monitoring of industrial assets in the field
allows to derive relevant insights about their operations and performance. Such
complex real-world datasets are usually composed of heterogeneous subsets (or
multi-views) of parameters, which should be considered explicitly during analysis
in order to exploit fully the richness of the data. For instance, the performance
of an industrial asset is impacted by a diverse set of factors e.g. operating modes
concerned with the internal working of the asset and exogeneous factors such as
weather conditions. However, it is not trivial to directly link or trace back certain
performance to distinct operating modes due to the multitude of influencing
factors, which are often also highly interdependent.

In addition, real-world datasets often originate from different sources, which
may differ in period coverage, resolution, data quality, technical configuration,
etc. Pooling multi-source datasets together, which is often done to increase statis-
tical representativeness, requires standardization and normalization, which often
leads to information loss and may mask source-specific features. For instance,
mining for distinct operating modes is more appropriate to be pursued per asset,
rather than pooling everything together, since not all assets might go through
all operating modes. This implies that one might need to approach multi-source
analysis in an incremental fashion rather than aiming for brute force integration
of all the available data.

2 Proposed Approach

Classical data mining and analysis approaches have still some shortcomings in
this aspect aiming at delivering a total integration solution at once. An alter-

? This research was supported by the Brussels-Capital Region - Innoviris, and received
funding from the Flemish Government (AI Research Program) and BitWind project.

?? The full paper is accepted for the 5th AALTD workshop and publication in LNAI.
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native approach is to exploit the multi-view nature of the data. Some
rewarding techniques of multi-view mining have been already proposed in the
literature [1, 2]. However, they all were concerned with single-source datasets and
dedicated to one specific mining approach (e.g. clustering or deep learning). This
research provides a general analysis methodology, which focuses on the following
key aspects: initial individual analysis per source in order to preserve the rich-
ness and the authenticity of each source; individual mediation analysis per source
aiming at bringing the sources closer together; cross-source integration analysis
aiming at leveraging analysis results across the sources without compromising
their individual characteristics.

More concretely, the proposed approach consists of several distinctive layers:
(i) select a suitable set (view) of parameters in order to identify characteristic
behaviour within each individual source (ii) exploit an alternative set (view) of
raw parameters (or high-level features) to derive some complementary represen-
tations (e.g. related to source performance) of the results obtained in the first
layer with the aim to facilitate comparison and mediation across the different
sources (iii) integrate those representations in an appropriate way, allowing to
trace back similar cross-source performance to certain characteristic behaviour
of the individual sources.

3 Implementation and Results

The validity and the potential of the proposed approach have been demonstrated
on a real-world dataset of a fleet of wind turbines. We have been able to identify
distinctive profiles of production performance and subsequently, have been able
to establish an explicit link between those performance profiles and well char-
acterised operating modes. Subsequently, distinctive performance profiles have
been derived and associated with each operating mode, which enable converting
the fleet data into powerful letter code suitable for more advanced mining.

4 Conclusion

We have proposed a novel data analysis approach that can be used for multi-
view analysis and integration of heterogeneous real-world datasets originating
from multiple sources. The validity and the potential of the proposed approach
has been demonstrated on a real-world dataset of a fleet of wind turbines. The
obtained results are very encouraging. The method is very efficient and robust
in detecting characteristic operating modes across the fleet.
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The number of devices producing spatiotemporal data is increasing and so the
data that need to be processed by the applications. It is important to have generic
and flexible tools to be able to summarize and analyze this data efficiently. One
such tool is the discovery of Regions of Interest (ROI) or densely visited regions.
The discovery of ROI can also be instrumental as a preprocessing step to rewrite
the trajectories as a sequence of interesting places instead of a sequence of GPS
data point, which are easier to process and match by frequent sequence analysis
tools [1].

There exists different algorithms to extract ROIs, depending on the definition
of density we choose. In our paper we are interested in grid-based approaches
which first divide the map into a grid and assign a density value to each cell. The
density of a cell is the number of trajectories crossing it. A cell is dense when its
density value is above a threshold. Then the ROIs are formed by aggregating,
in some ways, the dense cells, similarly to a clustering algorithm. Multiple ap-
proaches exist to aggregate the dense cells in ROIs, generally based on a greedy
expansion or clustering. While these methods give good results, they do not
easily accept new constraints such as various types of shapes, and application
dependent intra- or inter-ROI constraints.

To address these weaknesses, we propose a new approach to extract Con-
strained Regions of Interest, which is illustrated in Figure 1. This two-step op-
timization process allows to impose constraints on individual ROI (intra-ROI
constraints) and between the ROIs (inter-ROI constraints).

The first step is to generate a set of candidates ROI (e.g. rectangles, circles,
or any non-parametric shapes) that respects the intra-ROI constraints such as
“Every ROI must contain at least one cultural point of interest”.

Once we have this set of candidates, we will select the ROIs to return to the
user, while ensuring they respect inter ROIs constraints. The idea is to consider
that a set of ROI is a classifier that indicates whether a cell on the grid is dense
or not. Such classifier would make some errors (a dense cell not covered by a
ROI or a non-dense cell covered by a ROI) and we are interested in a set of K
ROIs that minimizes the number of errors.

We propose an efficient Integer Linear Program (ILP) model to solve this
problem with one binary decision variable per candidate with the constraint
that two ROIs cannot overlap. We use the Minimum Description Length prin-
ciple to automatically detect the appropriate K. During this phase we can add

? This paper is a summary of a paper with the same name published at Discovery
Science 2020 https://doi.org/10.1007/978-3-030-61527-7_41.
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Fig. 1: Process of our approach: a) Creation of the density grid from the trajec-
tories; b) Generation of candidates shape on the grid; c) Selection of the ROIs
from the set of candidates.

constraints between the ROI as long as they can be translated into a linear con-
straint. For example, the constraint “If we select this ROI, then that ROI must
also be selected” can be expressed using classical boolean logic constraints on
the decision variables.

We compared our method to PopularRegions [2], a method specifically de-
signed to extract ROIs, and OPTICS [3] when clustering the dense cells. We
show that our method is slower than the others but, as the number of candi-
dates decreases, our run time becomes like OPTICS. Moreover we obtain a lower
description length with a better balance between the errors and the number of
ROIs. This allows our method to be more flexible and have a better general-
ization. Finally, we show that when adding up to 40% of noise in the data,
our method is more stable than PopularRegion and OPTICS. We refer to the
complete article [4] for further information on the approach.
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Gathering data examples for training a machine learning classifier in a real-
world scenario is often simple. However, the process of assigning labels to the
examples can be costly in terms of money, time, or effort. In such scenarios, we
might obtain datasets with more unlabeled than labeled data. Semi-supervised
classification [4] techniques arise from the need to address this problem using
both labeled and unlabeled data for training a classifier. The aim is to increase
the classifier’s generalization ability compared to a supervised classifier that only
uses the available labeled data.

On the other hand, an increasing requirement observed in machine learning
is to obtain not only precise models but also interpretable ones. End users often
demand an insight into how an algorithm arrives at a particular outcome and
needs an explanation of the decisions. A certain degree of global interpretability
can be obtained using more transparent techniques as proxies for solving a task
[1]. We refer to intrinsically interpretable models (e.g., linear regression, decision
trees or decision lists) as white boxes, as opposed to the less interpretable black-
box ones. Grey-box models use white boxes as surrogates for distilling previously
trained black boxes. The grey boxes attempt to explain the domain by approx-
imating the predictions produced by a black-box classifier, in an intrinsically
interpretable structure.

In this paper, we explore the performance of the self-labeling grey-box (SlGb)
[2]. In the SlGb, we use a black-box classifier to predict the decision class of
the unlabeled instances, while a surrogate white box is used to build an in-
terpretable predictive model, based on the whole instance set. The aim is to
outperform the base white-box component using only the available labeled data,

? This work was supported by the IMAGica project, financed by the Interdisciplinary
Research Programs and Platforms (IRP) funds of the Vrije Universiteit Brussel;
and the BRIGHTanalysis project, funded by the European Regional Development
Fund (ERDF) and the Brussels-Capital Region as part of the 2014-2020 operational
program through the F11-08 project ICITY-RDI.BRU (icity.brussels).
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while maintaining a good balance between performance and interpretability. The
SlGb approach’s performance largely depends on the black-box classifier’s predic-
tion capability when classifying unseen instances. In the context of self-labeling,
the classification mistakes can reinforce themselves if no amending procedure is
used during self-training. Therefore, we explore the effect of two amending pro-
cedures for assigning more importance to more reliable instances before training
the surrogate white box, avoiding the propagation of errors or inconsistent infor-
mation. The first strategy is based on class membership probabilities provided
by the black box in the self-labeling. The second strategy aims to correct the
inconsistency in the labels in the enlarged dataset by computing the certainty
of the classification based on the Rough Set Theory (RST) [3] inclusion degree
measure.

The experiments show that the choice of a white box and amending is relevant
for the size of the structure. SlGb produces simpler models when using decision
lists instead of a C4.5 decision tree as surrogate white boxes, even when no
amending is performed. However, the amending procedures help further increase
the simplicity without affecting the prediction rates by giving more importance
to confident instances in the self-labeling. Especially RST based amending looks
more promising since it does not need the black-box base classifier to provide
calibrated probabilities. Furthermore, RST-based amending could be the right
choice for a given case study where the uncertainty coming from inconsistency
is high, even on the available labeled data. The study varying the number of
unlabeled instances and labeled instances together shows that even when the
number of labeled instances is not that scarce, the SlGb is able to leverage
unlabeled instances for increasing the performance. Another conclusion is that
adding unlabeled instances does not make the interpretability worse compared
to adding more labeled instances. This evidences that the RST-based amending
avoids that the SlGb generates more rules from inconsistent instances. Finally,
the experimental comparison shows that our SlGb method outperforms the state-
of-the-art self-labeling approaches, yet being far more simple in structure than
these techniques.
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1 Introduction

When products and services are adapted to individual tastes, they become more
appealing, desirable, informative, etc. to the intended user than one-size-fits all
alternatives. Digital systems enable such personalization on a grand scale. The
key enabler is data. While the software is identical for all users, the system’s be-
havior can be tailored based on experiences with individual users. Reinforcement
learning (RL) has been attracting attention for personalization. An overview of
RL for personalization, however, is lacking.

This contribution summarizes our systematic review and categorization of
166 papers describing RL solutions to personalization problems, problem con-
texts and evaluation strategies across domains [1]. It thus aids researchers and
practitioners in identifying relevant related work, promotes the understanding
of the usage of RL and identifies challenges across domains. The data used and
a tool1 for exploring it have been made available.

2 Systematic Literature Review

We performed a systematic literature review following the PRISMA standards.
We queried five databases on keywords similar to ‘reinforcement learning‘, ‘con-
textual bandit‘ and ‘personalization‘ and found 983 publications. Titles and
abstracts and subsequently full texts were assessed for eligibility, resulting in
166 included papers. For included papers, data on the problem context, solution
architecture and evaluation strategy were extracted.

? Authors contributed equally
1 Data exploration tool at https://florisdh.nl/rl4personalization/
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Fig. 1: Number of publications per year,
dashed indicates projection for full year.

Domain # Domain #

Health 44 Transport 9
Entertainment 30 Energy 6
Commerce 28 Other 5
Education 25 Smart Home 4
Domain Indep. 11 Communication 4

Table 1: Number of publications per
domain.

3 Results

Figure 1 shows a marked increase in publications over time. Table 1 shows that
RL is used for personalization in various domains. We continue by looking at
problem contexts, solution patterns and evaluation strategies.

Problem In most publications (130/166), users do not provide feedback to
the system explicitly, but feedback is derived from various measurements that
indicate suitability of system behavior. Data on user responses are available in
a minority of cases (66/166) and safety concerns are mentioned in a reasonable
number of works (30/166) whereas privacy is not (9/166).

Solutions The RL framework can be used for personalization in various
ways: learning a single policy across all users is the most popular approach
(91/166). User traits can be included in the state representation in this approach
(51/91). The next most popular approach is to represent each user as a separate
environment and learn a policy per user (59/166). Hybrid approaches, such as
a policy for every group of users, are less popular (11/166). Only a small frac-
tion compares different approaches (5/166). Combining these approaches is an
interesting direction for future work, e.g. to increase the level of personalization
as more data is obtained

When analyzing the most popular algorithms, we found generic and well-
established ones such as Q-learning, contextual bandits and Sarsa to be most
popular. Besides these, we find little algorithm re-use. In recent years, approaches
that include function approximation with deep neural networks such as DQN or
DDQN are becoming more popular.

Evaluation We reviewed the usage of live or real-life data for evaluation and
found that the number of studies with such an evaluation is increasing. This in-
dicates that RL has become sufficiently robust to apply in contexts that involve
humans. However, the relative number of works that include a realistic evalua-
tion is not increasing. Furthermore, we find that little works compare multiple
algorithms. This indicates that the field is growing, but not yet maturing.
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Alternating-time temporal logic ATL∗ and its fragment ATL [1] extend temporal
logic with the notion of strategic ability. They allow to express statements about
what agents (or groups of agents) can achieve. For example, 〈〈i〉〉Fwini says that
agent i can eventually win no matter what the other agents do. Such properties
can be useful for specification, verification, and reasoning about interaction in
agent systems.

In this paper, we make the first step towards strategic analysis of asyn-
chronous multi-agent systems. Our contribution is threefold. First, we define a
semantics of strategic abilities for agents in asynchronous systems, with and with-
out perfect information. Secondly, we present some general complexity results
for verification of strategic abilities in such systems. Thirdly, and most impor-
tantly, we adapt partial order reduction (POR) to model checking of strategic
abilities for agents with imperfect information. We also present experimental
results demonstrating that POR allows to significantly reduce the size of the
model, and thus to make the verification more feasible. In fact, we show that the
most efficient variant of POR, defined for linear time logic LTL, can be applied
almost directly. The (nontrivial) proof that the LTL reductions work also for
the more expressive strategic operators is the main contribution of this paper.
Interestingly, the scheme does not work for verification of agents with perfect
information.

Conclusions in a Nutshell

The theoretical complexity results follow the same pattern as those for syn-
chronous MAS, though proving them required careful treatment. Consequently,
model checking of strategic abilities under imperfect information for asynchronous
systems is as hard as in the synchronous case. This makes model reductions es-
sential for practical verification. The most important result of this paper consists
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in showing that the partial order reduction for LTL−X can be almost directly ap-
plied to ATLir without nested strategic modalities. The importance of the result
stems from the fact that LTL−X has relatively weak distinguishing power, and
therefore admits strong reductions, clustering paths into relatively few equiva-
lence classes.

Interestingly, it turns out that the scheme does not work for ATL∗ with
perfect information strategies. Until now, virtually all the results have suggested
that verification of strategic abilities is significantly easier for agents with perfect
information. Thus, we identify an aspect of verification that might be in favour
of imperfect information strategies in some contexts.

All the technical details can be found in the original paper [4].
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The problem of forming teams has been a central question in many disci-
plines. Put simply, the problem is to form a set of agents with required ca-
pabilities so that they can perform a task together. In the domain of service
composition, this would correspond to a set of service providers, each perform-
ing a single service, which overall yields a composition of the desired service. In
the domain of query answering, this would correspond to data sources that can
each answer part of a given question. In the domain of rescue operations, this
would correspond to a set of human and robot agents that work to help civilians.

The term team may refer to a set of agents only or a set of agents and their
specific subtasks assignments. Following this, here we refer to teams as the set
of agents and their assigned subtasks. Assigning subtasks to individual agents is
typically modeled as an optimization problem, where coverage of the subtasks is
maximized, or the number of agents involved is minimized. Earlier approaches
model team formation with three important assumptions: (i) the overall task can
be divided into independent subtasks, (ii) agents’ capabilities as to what subtask
they can do is known or computed easily and (iii) the agents’ capabilities of
performing a subtask is binary (e.g., no variation in the quality of the subtask
performance). Even under these assumptions, the problem of assigning subtasks
to individual agents is known to be NP-hard.

In many domains, these assumptions do not hold. Consider the following
simple example from a query answering domain, where the question is to find
the title, author and summary of books. Three agents separately provide book
names, book authors, and book summaries. An answer to the question can be
found by using the information of these agents if they provide title, author
and summary information of the same books. The individual performance of
an agent depends on which subquery the agent is assigned. For example, one
agent provides three book titles and a thousand book summaries, while another
agent provides a thousand book titles and three book summaries. The number
of books returned in the answer depends on which agents are assigned to which
subqueries. Hence, building a team based on finding best performing individuals
does not always yield the best performing team.

This paper summarizes our work [1] that addresses the above challenges:
building teams for tasks whose subtasks are dependent to each other and the
performance of agents is affected by the assignments. We represent the interplay

? This work was done in the context of the Golden Agents project, funded by the
Netherlands Organization of Science NWO – Large Investments program.
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Fig. 1. An example expertise graph

between possible assignments of the
agents using expertise graph, which
stores information on how well
agents perform tasks individually
and how well they can support each
other on common or different sub-
tasks. It represents agent-capability
pairs as nodes and pair-wise co-
performances as edges. An edge be-
tween two nodes can be one of the
three types: c-edge denoting how
well the agent can carry out two sub-
tasks, j -edge denoting two agents
working on two different tasks, and
s-edge denoting how well one agent supports the other on the same subtask.

We develop two algorithms: one shot team building and iterative team build-
ing algorithms. Our algorithms use the expertise graph to approximate how
likely the agents are to perform well in dependent subtasks. We provide graph
metrics, such as cooperativeness and versatility, to use as heuristics. The one
shot team building algorithm selects assignments that have the highest value
for a given metric. It is similar to the traditional algorithms that maximize one
specific property of a team, such as communication. The iterative team building
algorithm starts with an existing team for a task, which might be generated with
a tool in hand, and improves the team to yield a better team performance in an
iterative manner. It replaces an assigned agent with another agent that has bet-
ter local cooperativeness in that specific team. The algorithm uses performance
estimation functions to decide when to iterate to find a better team or to stop.

We demonstrate the workings of our algorithms in a query answering multia-
gent system, where agents are data providers and tasks are queries. We evaluate
the algorithms in an experimental setup and compare the performance of the
algorithms. We see that for smaller task sizes, the teams built by the one shot
algorithm obtain better results. However, for larger task sizes, the iterative al-
gorithm outperforms the one shot algorithm consistently. This shows that when
the task is large, building a team by just adding “ideal” agents does not capture
the relations among them. It is necessary to consider how the team will perform
as a whole and update the team when an agent does not fit the team. Our work
differs from other approaches in that we consider how well two agents work to-
gether on a given subtask as well as the possible degradation of performance
when multiple subtasks are performed by a single agent. Further, we can build
better performing teams by improving existing teams incrementally.
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Epidemics of infectious diseases are an important threat to public health and
global economies. The most efficient way to combat epidemics is through pre-
vention. To develop prevention strategies and to implement them as efficiently
as possible, a good understanding of the complex dynamics that underlie these
epidemics is essential. To properly understand these dynamics, and to study
emergency scenarios, epidemiological models are necessary. Such models enable
us to make predictions and to study the effect of prevention strategies in sim-
ulation. The development of prevention strategies, which need to fulfil distinct
criteria (i.a., prevalence, mortality, morbidity, cost), remains a challenging pro-
cess. For this reason, we investigate a deep reinforcement learning (RL) approach
to automatically learn prevention strategies in an epidemiological model. The use
of model-free deep reinforcement learning is particularly interesting, as it allows
us to set up a learning environment in a complex epidemiological setting (i.e.,
large state space and non-linear dependencies) while imposing few assumptions
on the policies to be learned. In this work, we conduct our experiments in the
context of pandemic influenza, where we aim to learn optimal school closure
policies to mitigate the epidemic [1].

Pandemic preparedness is important, as influenza pandemics have made
many victims in the (recent) past and the ongoing COVID-19 epidemic is yet
another reminder of this fact. Contrary to seasonal influenza epidemics, an in-
fluenza pandemic is caused by a newly emerging virus strain that can become
pandemic by spreading rapidly among naive human hosts (i.e., human hosts with
no prior immunity) worldwide. This means that at the start of the pandemic no
vaccine will be available and it will take several months before vaccine production
can commence. For this reason, learning optimal strategies of non-therapeutic
intervention measures, such as school closure policies, is of great importance to
mitigate pandemics. To meet this objective, we consider a reinforcement learning
approach. However, as the state-of-the-art of reinforcement learning techniques
requires many interactions with the environment in order to converge, our first

4 https://bitbucket.org/ghentdatascience/ecmlpkdd20-papers/raw/master/ADS/sub 616.pdf
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contribution entails a realistic epidemiological model that still has a favourable
computational performance.

Specifically, we construct a meta-population model that consists of a set of
379 interconnected patches, where each patch corresponds to an administra-
tive region in Great Britain and is internally represented by an age-structured
stochastic compartmental model. To conduct our experiments, we establish a
Markov decision process with a state space that directly corresponds to our epi-
demiological model, an action space that allows us to open and close schools
on a weekly basis, a transition function that follows the epidemiological model’s
dynamics, and a reward function that is targeted to the objective of reducing
the attack rate (i.e., the proportion of the population that was infected). In this
work, we will use “Proximal Policy Optimization” (PPO) to learn the school
closure policies.

First, we set up an experiment in an epidemiological model that covers a
single administrative district. This setting enables us to specify a ground truth
that allows us to empirically assess the performance of the policies learned by
PPO. In this analysis, we consider different values for the basic reproductive
number R0 and the population composition (i.e., proportion of adults, children,
elderly, adolescents) of the district. Both parameters induce a significant change
of the epidemic model’s dynamics. Through these experiments, we demonstrate
the potential of deep reinforcement learning algorithms to learn policies in the
context of complex epidemiological models, opening the prospect to learn in
even more complex stochastic models with large action spaces. In this regard, we
consider a large scale setting where we examine whether there is an advantage
to consider the collaboration between districts when designing school closure
policies.

To situate this work in the state-of-the-art, we note that the concept to learn
dynamic policies by formulating the decision problem as a Markov decision pro-
cess (MDP) was introduced in [2]. To our best knowledge, the work presented in
this manuscript is the first attempt to use deep reinforcement learning algorithms
directly on a complex meta-population model.

To summarize, in this work, we demonstrate the potential of deep reinforce-
ment learning in the context of complex stochastic epidemiological models. As
few assumptions are made on the epidemiological model, our new technique has
the potential to be used for other epidemiological settings, such as the ongoing
COVID-19 pandemic. For future work, it would be interesting to investigate how
well these algorithms scale to even larger state and/or action spaces.
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This is an abstract of a paper published at the 19th International Conference on
Autonomous Agents and Multiagent Systems, Auckland, New Zealand [2].

1 Introduction

When a learning algorithm requires as few data samples as possible, it is called
sample efficient. Recently, Jin et al. introduced the first provably efficient model-
free reinforcement learning (RL) algorithm [1]. Later, a few other sample-efficient
model-free algorithms were developed [4, 3]. The key factor that allows these
algorithms to achieve sample efficiency is their use of the principle of optimism
in the face of uncertainty.

The paper studies the effect of optimism on sample efficiency of RL. It
presents a generalized theory on optimistic model-free RL, unifying the exist-
ing algorithms. Using this theory, we establish sample efficiency of optimistic
Q-learning by showing that its regret grows sub-linearly with respect to the
number of samples. Moreover, we show that the regret of optimistic Q-learning
can be explained by three distinct factors.

2 Generalized Optimistic Q-Learning

In learning, optimism is used in two ways: optimistic initialization and optimistic
exploration. We look at the existing optimistic model-free RL methods [1, 4, 3]
to see how they incorporate these aspects of optimism.

In initialization, large values are assigned to all state-action combinations.
This guarantees that actions never chosen before seem especially lucrative. When
such initialization is not possible (e.g., in deep RL), the Q-values of unvisited
states are augmented with a bonus term that we call a bonus for optimism.

Optimistic exploration is done by using upper confidence bounds (UCBs)
on state-action values. In each interaction, the action with the highest UCB is
chosen. This happens either if the true optimal value is high, or if there is not
enough confidence in it yet. In the former case, the agent essentially performs

? This research received funding from the Netherlands Organization for Scientific Re-
search (NWO).
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exploitation, as the chosen action is the best one. The latter case represents ex-
ploration, because an action with high uncertainty in its outcome is chosen. Thus,
UCBs help to automatically balance exploration and exploitation. To maintain
the UCBs, a confidence bonus is added to the Q-values during learning.

We incorporate these bonuses in an algorithm that we call generalized op-
timistic Q-learning and perform a theoretical analysis of its sample efficiency.
Unlike previous results, our analysis does not rely on the particular form of the
bonuses to determine whether the resulting algorithm is sample efficient or not.

The general form we use allows us to show that the total regret R of optimistic
Q-learning is asymptotically bounded by the sum of three different terms:

R = O
(
µ(X +B + E)

)
. (1)

The state-action space size X represents the effect of the optimistic initialization,
as the number of initial values is equal to X. The bonus effect B depends on the
bonuses for optimism and for confidence. The last term E represents the required
number of interactions with the environment to ensure that all of the possible
outcomes are experienced with high probability. The magnitude µ depends on
the reward range and the discounting factor and represents the scale of Q-value.

The formal proof of this regret bound relies on some mild necessary con-
ditions. They can be found in the paper along with the formal definitions of
the terms µ, X, B, and E and the proof itself. The paper also gives an exam-
ple of a new algorithm designed within the generalized optimistic Q-learning
framework. This algorithm, called UCB-H+, is similar to UCB-H [1], but uses a
different learning rate. Using the theoretical framework of the paper, we prove
that it is sample-efficient. Then we evaluate UCB-H+ in two experiments, which
demonstrate a regret reduction of 13% and 43% compared to UCB-H.

3 Conclusions

Generalized optimistic Q-learning incorporates existing optimistic model-free
reinforcement learning, and our proof does not rely on a particular form of
learning rate or bonuses, allowing transfer of these results to new algorithms.
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In order to reason and communicate about their environment, autonomous
agents need to be able to distill meaningful concepts from the observed streams
of continuous sensori-motor data. In this paper, we report on computational
simulations of how such concepts are distilled through a series of situated com-
municative interactions. Our approach builds further on earlier work within the
language game paradigm [5], where concepts were either limited to continuous
data on a single feature channel (e.g. [1]) or to non-continuous data on multiple
feature channels (e.g. [6]). We lift both restrictions at the same time. Through a
tutor-learner scenario, our novel method allows an agent to construct meaningful
concepts which are formed by discriminative combinations of prototypical values
on human-interpretable feature channels. Most current approaches that bridge
between the continuous and symbolic domain make use of deep learning tech-
niques (e.g. [2]). These approaches often achieve high levels of accuracy but they
rely on large amounts of training data, the resulting models lack transparency
and they require partial or complete re-training to accommodate changes in the
environment.

The experiments are set in an environment based on the CLEVR dataset
[4]. This environment consists of scenes with geometrical objects of different
colours, shapes, sizes and materials. In each interaction, the tutor uses a single
word to refer to one of the objects, e.g. “sphere”. The learner observes the scene
through continuous-valued and human-interpretable feature channels, such as
‘area’, ‘number-of-corners’ or ‘width-height-ratio’. These features are obtained
through simulation (simulated world setting) or object detection, segmentation
and feature extraction techniques [3] (noisy world setting). The task of the
learner is to point out the object meant by the tutor. It does so by comput-
ing the similarity between each object and the current representation of the
concept that is associated with the word form uttered by the tutor. At the end
of the interaction, the learner receives feedback on whether or not it was correct
and the tutor points out the correct object. Using this information, the learner
can update the concept it used. More specifically, the learner rewards the most
discriminating subset of feature channels and punishes the others. Additionally,
all prototypical values are shifted slightly towards the object. For each concept,
the learner must simultaneously learn which feature channels are important and
what their prototypical values should be. Figure 1 shows the communicative
success of the agents and an example of a learned concept.
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Fig. 1. (A) The agent achieves 100% communicative success in the simulated world
and 91% in the noisy world (B) Concepts are represented through a weighted set of
attributes. The weight corresponds to the certainty of an attribute belonging to the
concept. Each attribute is modelled as a normal distribution that keeps track of its
prototypical value (the mean) and the standard deviation. The weighted sets capture
discriminative combinations of attributes. The concept sphere focusses on attributes
related to shape.

Through a range of experiments, we showcase several desirable properties
of our approach. The first experiment shows that the agent rapidly adapts to
changes in the environment and the approach allows for incremental learning.
In the second experiment, we demonstrate that the concepts generalise well
to unseen settings. Finally, we show that the concepts can be learned even
when combined compositionally. These properties, combined with fast and data-
efficient learning and human-interpretable representations, make our approach
well-suited to be used in robotic agents for mapping continuous sensory input to
grounded, symbolic concepts. These can in turn be used for higher-level reason-
ing tasks, such as navigation, (visual) question answering and action planning.
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Abstract. Recent works using deep learning to solve the Traveling
Salesman Problem (TSP) have focused on learning construction heuristics.
Such approaches require additional procedures such as beam search and
sampling to improve solutions and achieve state-of-the-art performance.
However, few studies have focused on improvement heuristics, where a
given solution is improved until reaching a near-optimal one. In this work,
we propose to learn a local search heuristic based on 2-opt operators via
deep reinforcement learning. We propose a policy gradient algorithm to
learn a stochastic policy that selects 2-opt operations given a current
solution. Moreover, we introduce a policy neural network that leverages a
pointing attention mechanism, which unlike previous works, can be easily
extended to more general k-opt moves. Our results show that the learned
policies can improve even over random initial solutions and approach
near-optimal solutions at a faster rate than previous state-of-the-art deep
learning methods.

Keywords: Deep Reinforcement Learning · Combinatorial Optimization · Trav-
eling Salesman Problem.
Acknowledgments: This research is funded by NWO Big data: Real Time ICT
for Logistics, project number 628.009.012
Publication: The full paper of this abstract has been accepted at the 12th
Asian Conference on Machine Learning (ACML), 2020. Available at http:
//proceedings.mlr.press/v129/costa20a/costa20a.pdf

1 Introduction

The Traveling Salesman Problem (TSP) is a well-known NP-hard combinatorial
optimization problem. Exact methods for the TSP such as linear programming
[1] are guaranteed to find an optimal solution but are often too expensive compu-
tationally. On the other hand, designed heuristics require specialized knowledge
and their performances are often limited by algorithmic design decisions.

Thus, a machine learning method could potentially learn better heuristics
by extracting useful information directly from data. We focus on methods in
which a given solution is improved sequentially until reaching an (local) optimum.
Thus, we propose a deep reinforcement learning algorithm to learn improvement
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heuristics based on 2-opt moves. Our approach can achieve near-optimal results
that are better than previous deep learning methods based on construction and
improvement heuristics.

2 Methods

Our neural network follows the general encoder-decoder architecture. The encoder
embeds both graph topology and the positions of each node in a solution. Given
node and sequence embeddings the policy decoder is autoregressive and samples
output actions one element at a time. The value decoder operates on the same
representations but generates real-valued outputs to estimate state values.

In our formulation, we resort to the Policy Gradient learning rule, to optimize
our policy. Our model is close to REINFORCE [3] but with periodic episode
length updates. Thus, at the start the agent learns how to behave over small
episodes for easier credit assignment, later tweaking its policy over larger horizons.

3 Results

We learn policies for TSP instances with 20, 50 and 100 nodes, and depict the
optimality gap for 10,000 test instances in Table 1. The results show that we can
learn effective policies that decrease the optimality gap over the training epochs
and can outperform the effective Graph Attention (GAT) [2] and are close to the
optimal solutions.

Table 1: Performance of TSP methods w.r.t. Concorde. Type: RL: Reinforcement
Learning, S: Sampling, Time: Time to solve 10,000 instances.

Method Type TSP20 TSP50 TSP100
Cost Gap Time Cost Gap Time Cost Gap Time

Concorde [1] Solver 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)

GAT [2] RL,S 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)
Ours RL 3.84 0.00% (15m) 5.70 0.12% (29m) 7.83 0.87% (41m)
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Numerous real-world problems involve both multiple actors and objectives
that should be taken into account when making a decision. Multi-objective multi-
agent systems (MOMAS) represent an ideal setting to study such problems, but
given the increasingly complex dimensions involved, it still remains an under-
studied domain despite its high relevance. We present here a short overview of
our recent advances in multi-objective multi-agent decision making settings.

MOMAS Taxonomy In MOMAS the reward signal for each agent is a vector,
where each component represents the performance on a different objective. We
consider that compromises between competing objectives should be made on the
basis of the utility that these compromises have for the users. In other words, we
assume there exists a utility function that maps the vector value of a compromise
solution to a scalar utility.

In order to offer a unified view of the field, we build a taxonomy (Figure 1)
of what constitutes a solution for a multi-objective multi-agent decision problem
based on reward and utility functions. More details on each setting and solution
concept can be found in [2].
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Fig. 1: Multi-objective multi-agent decision making taxonomy and mapping of
solution concepts.

Another factor we identify is the difference between the optimisation criteria:
expected scalarised returns (ESR) and scalarised expected returns (SER) [1].
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This roughly distinguishes settings where either the utility of a single outcome
(ESR) or the utility of the average outcome over multiple runs (SER) matters.

Learning in MONFGs We have studied multi-objective normal form games
under the SER optimisation criterion with non-linear utility functions [3]. We
show by example that while Nash equilibria (NE) need not exist, correlated
equilibria (CE) can still be present when optimising with respect to a single
given signal (i.e., single-signal CE).

Opponent modelling in MONFGs When the same multi-objective reward
vector leads to different utilities for each user, it becomes essential for an agent
to learn about the behaviour of other agents in the system. In [4] we present the
first study of the effects of opponent modelling (OM) on MONFGs with non-
linear utilities, under the SER criterion. We demonstrate that OM can alter the
learning dynamics in this setting: when there are no NE, OM can have adverse
effects on utility, or a neutral effect at best; when equilibria are present, OM can
confer significant benefits (Figure 2).
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Fig. 2: Empirical outcome distributions when agents are using opponent mod-
elling with utility functions u1(p) = p1 · p1 + p2 · p2 and u2(p) = p1 · p2. Oppo-
nent modelling allows each agent to steer the outcome towards its preferred NE.
Agent 1 obtains the highest SER under (L,L), while for Agent 2 that is (M, M).

References
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decision making: a utility-based analysis and survey. Autonomous Agents and Multi-
Agent Systems 34 (2020)
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Multi-agent coordination is prevalent in many real-world applications, such as
traffic light control, warehouse commissioning and wind farm control. Often,
such settings can be formulated as coordination problems in which agents have
to cooperate in order to optimize a shared team reward. Handling multi-agent
settings is challenging, as the size of the joint action space scales exponentially
with the number of agents in the system. Therefore, an approach that directly
considers all agents’ actions jointly is computationally intractable. This has made
such coordination problems the central focus in the planning literature. Fortu-
nately, in real-world settings agents often only directly affect a limited set of
neighbouring agents. This means that the global reward received by all agents
can be decomposed into local components that only depend on small subsets
of agents. Exploiting such loose couplings is key in order to keep multi-agent
decision problems tractable.

In this work, we consider learning to coordinate in multi-agent systems. While
most of the literature only considers approximate reinforcement learning meth-
ods for learning in multi-agent systems, it has recently been shown that it is
possible to achieve theoretical bounds on the regret (i.e., how much reward is
lost due to learning). In this work, we use the multi-agent multi-armed ban-
dit problem definition, and improve upon the state of the art. Specifically, we
propose the multi-agent Thompson sampling (MATS) algorithm [5, 6], which
exploits loosely-coupled interactions in multi-agent systems.3 The loose cou-
plings are formalized as a coordination graph, which defines for subsets of agents
whether their actions depend on each other. We assume the graph structure
is known beforehand, which is the case in many real-world applications with
sparse agent interactions (e.g., wind farm control). Additionally, our method
leverages the exploration-exploitation mechanism of Thompson sampling (TS).
TS has been shown to be highly competitive to other popular methods, e.g., the
Upper Confidence Bound algorithm [3]. Recently, theoretical guarantees on its
regret have been established, which renders the method increasingly popular in
the literature. Additionally, due to its Bayesian nature, problem-specific priors

3 The source code of MATS is available at github.com/Svalorzen/AI-Toolbox. [1]
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can be specified, which has strong relevance in many practical fields, such as
advertisement selection and influenza mitigation.

We provide a finite-time Bayesian regret analysis and prove that the upper
regret bound of MATS is low-order polynomial in the number of actions of a sin-
gle agent for sparse coordination graphs. This is a significant improvement over
the exponential bound of classic TS, which is obtained when the coordination
graph is ignored. Moreover, we show that MATS improves upon the state-of-the-
art algorithms, Multi-Agent Upper Confidence Exploration (MAUCE) [2] and
Sparse Cooperative Q-Learning (SCQL) [4], in various synthetic settings. Al-
though MATS and MAUCE have similar theoretical guarantees, we found that
MATS consistently outperforms both MAUCE and SCQL empirically. We argue
that the high performance of MATS is due to the ability to seamlessly include
domain knowledge about the reward distributions and treat the problem pa-
rameters as unknowns. To highlight the power of this property, we introduced a
novel setting with skewed reward distributions. As MAUCE only supports sym-
metric exploration bounds, it is challenging to correctly assess the amount of
exploration needed to solve this task. In contrast, MATS has the ability to ex-
ploit the shape of the reward distribution to achieve more targeted exploration.
Finally, we demonstrate the practical benefits of MATS on a realistic wind farm
control task. As wind passes through the farm, downstream turbines observe a
significantly lower wind speed. This is known as the wake effect, which is due
to the turbulence generated behind operational turbines. Wake redirection is a
control mechanism where turbines’ rotors are misaligned to deflect wake away
from the wind farm. While a misaligned turbine produces less energy on its own,
the group’s total productivity is increased. Physically, the wake effect reduces
over long distances, and thus, turbines tend to only influence their neighbours.
We can use this domain knowledge to define groups of agents and organize them
in a graph structure. We demonstrate that MATS achieves state-of-the-art per-
formance on the wind farm control task.
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1 Introduction 

Virtual reality (VR) provides many promising opportunities with regard to training of 
communication skills, as it provides a medium where users can safely practice their 
skills by engaging in social interactions with Intelligent Virtual Agents through verbal 
and non-verbal modalities [1]. This way, VR allows users to practice what to say when, 
for instance to learn how to respond to a nervous interlocutor, or how to communicate 
professionally under increasing levels of stress. The ability for people to practice their 
skills is of great importance, as the transfer of ‘knowing how to do something’ to ‘ac-
tually doing it’ is difficult, even when one knows what he/she is expected to do [2].  

In 2019, The Simulation Crew has developed an interactive VR communication 
trainer that allows users to interact with Intelligent Virtual Agents through speech. To 
process the user’s input and generate appropriate output, the system makes use of a 
number of AI techniques, including speech recognition, multi-modal social signal anal-
ysis, and dialog modelling. These features allow the user to interact with the system 
using free speech, which distinguish it from many communication trainers that based 
on multiple choice menus (e.g., [1]). As a result, users have a more natural experience 
while interacting with the virtual agents. Hence, users are encouraged to be more ac-
tively involved with the material and come up with their own input, which may result 
in better outcomes after training [3]. In addition to the verbal communication, this ap-
plication also takes into account various aspects of the non-verbal communication of 
the user, such as prosody and gaze direction. It can thus provide the user feedback on 
the effect of non-verbal behaviours such as nodding and humming on the interlocutor. 

2 Application 

The NS (the largest passenger rail transport company in the Netherlands), is highly 
interested in the use of a VR communication training for their personnel and willing to 
cooperate in scientific research. Within NS, education and training of their personnel is 
of great importance. Traditionally, this is often done by making use of role play. How-
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ever, employees sometimes feel uncomfortable when participating in role play, espe-
cially with other people present and watching them while practicing. They therefore 
encounter the feeling of being assessed instead of a safe environment to practice. 

Within this new VR communication training, employees are instructed to help a dis-
abled passenger to get on the train. In this scenario, employees can practice with more 
visual tasks like situating the gangway, but also with social tasks related to communi-
cation with passengers. This pilot consists of several use cases, for instance allowing 
users to practice in a quiet scenario, or in scenarios that include several stress factors. 

Users typically play the scenarios twice with the opportunity to make mistakes, re-
peat the actions and learn. They are also provided the opportunity to intentionally make 
mistakes in order to see the effect on the development of the scenario. The effect of the 
users’ actions on the development of the scenario provides users with feedback during 
their training. An example of this type of feedback is the verbal and non-verbal response 
of the passenger (e.g., when the user ignores a request, the passenger may become up-
set). In addition, at the end of the scenario users receive feedback on their performance, 
both by the passenger and by the system. 

The training concludes with a scenario where the user encounters several stress fac-
tors. Within this scenario, users will be distracted from their original task in order to 
challenge them to keep communicating professionally when encountering distractions 
that resemble distractions in real-life. 

3 Conclusion 

In August 2020, a pilot evaluation of the training system has been conducted in collab-
oration with Radboud University and TNO. During three sessions, a total of 30 em-
ployees of NS have tested the system, and both qualitative and quantitative feedback 
was gathered. Our preliminary conclusion is that participants were generally very pos-
itive about the system, and even though they signalled various points for improvement 
they were particularly enthusiastic about the ability to engage with the virtual agents in 
an ‘open’ conversation using free speech. Furthermore, they confirmed that this type of 
training offers promising possibilities for training their personnel, in particular for new 
employees. A working demonstration of the system will be presented at the conference. 
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Abstract. In this demo we showcase DMN-IDP, a user-friendly tool
which combines the readability of the Decision Model and Notation
(DMN) standard with the power of the IDP system through an interac-
tive interface.

The Decision Model and Notation (DMN) standard is a table-based way
of representing decision logic, with a focus on readability and user-friendliness.
Designed by the Object Management Group, it was quickly adopted in various
industries. In academia, interest in DMN to represent knowledge is also growing,
because of its accessibility as a modelling language for domain experts [6]. To use
DMN models, tools exist which can compute a suitable assignment of values to
the decision variables, given the values of the environmental variables, by means
of forward propagation.

In [4], it was argued that the knowledge expressed in a DMN model can be
used for much more. For instance, value propagation can also be done in other
directions, such as from decision to environmental variables. Other examples
are reasoning on incomplete data, and applying different inference tasks, such
as optimization. To illustrate their approach, the authors made use of the IDP
knowledge base system [5]. By manually translating DMN models into first-order
logic knowledge bases (KBs), users could interact with the KB in a user-friendly
way via a browser-based interface. While this results in a powerful and flexible
way of working, there are two main downsides. Firstly, the DMN models need to
be created in a separate tool. Secondly, the translation from DMN to IDP KB is
done manually, for which knowledge of the representation language of the IDP
system is required.

In this demo, we present DMN-IDP, a full-fledged DMN tool which combines
the dmn-js DMN editor [2] and the IDP-based Interactive Consultant interface
[3]. Using this tool, a user can upload or create DMN models, which are then
translated into IDP KBs. Users can interact with these models via the Inter-
active Consultant interface. The translation from DMN to IDP is done by the
same transformation used in the cDMN framework [1]. The interface supports
propagating values in any direction, reasoning on incomplete data, optimization
of values and explanation of decisions. In this way, DMN models become useable
in more situations, removing the need to build specific models for every target
output in a use case.

? This research received funding from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.
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Calculate Body Mass Index
U Weight(kg) Height(m) BMI
1 — — weight / (height * height)

Decide BMI Level
U BMI BMI Level Risk Level
1 < 18.5 Underweight Increased
2 [18.5..24.8] Normal Low
3 [25..29.9] Overweight Increased
4 [30..34.9] Obese I High
5 [35..39.9] Obese II Very High
6 > 39.9 Extreme Obesity Extremely High

Fig. 1: A DMN model for deciding a patient’s BMI level and risk level.

As an example, consider the DMN model in Figure 1, which calculates a
BMI level and risk level based on a patient’s weight and height. The table on
the left consists of one rule, which is read as “For every possible weight and
height, the BMI is weight divided by height squared.” The table on the right
then decides what the value for BMI Level and Risk Level is, based on the BMI.
Using this model, standard DMN tools could for example calculate that for a
weight of 100kg and height of 1.8m, the BMI is 30.9, resulting in a high risk level.
However, say we now want to know the opposite, i.e., what weight would give a
1.8m patient a low risk level. Standard DMN tools cannot infer this information
from this model. Our tool on the other hand is capable of reasoning backwards,
even with incomplete data. This allows us to enter the height and set the value
of Risk Level to “Low” while leaving the weight unknown. By now maximizing
the Weight variable, we find that a weight less than 80.7kg results in a low risk
for the height.

The tool also includes some basic functionality for detecting common errors
in DMN specifications. We plan to develop this further in future work, along
with a functionality to improve the traceability of decisions.

During the demo, participants will get to interact with our tool via multiple
use cases, allowing them to explore the capabilities of the system freely. They
will also be encouraged to experiment with the DMN models themselves, so that
they can learn the connections between the components. An online version of
the tool is available at https://autoconfig-dmn.herokuapp.com/.
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Recent years have seen a surge of algorithms and architectures for deep Re-
inforcement Learning (RL), many of which have shown remarkable success for
various problems. Yet, little work has attempted to relate the performance of
these algorithms and architectures to what the resulting deep RL agents actu-
ally learn, and whether this corresponds to what they should ideally learn. Such
a comparison may allow for both an improved understanding of why certain
algorithms or network architectures perform better than others and the devel-
opment of methods that specifically address discrepancies between what is and
what should be learned.

Ideal Representation . The concept of ideal representation we utilize is
the Coarsest Markov State Representation (CMSR). We define this representa-
tion as one in which the Euclidean distances between states are proportional to
how ”behaviorally different” [2] those states are. Behavioral similarity thereby is
measured by a specific bisimulation metric [1]. This bisimulation metric regards
states as equivalent if and only if they have the same expected reward and tran-
sition distribution over all state equivalence classes for all actions. Moreover, if
the parameters of two equivalent states are altered on a small scale, the metric
distance between the states will stay small. Learning an internal state represen-
tation that is similar to the CMSR has several desirable theoretical properties:

– The CMSR is the smallest state representation that still allows for the pre-
diction of the reward and next state [3].

– The CMSR does not distinguish states based on features that are irrelevant
for predicting the next reward and internal state. Thus, a policy learned
based on this representation generalizes to different values for such features.

– If a subset of the features required for predicting the reward and next internal
state for a domain is sufficient for predicting the reward and next internal
state after modifying the reward or the transition function, the CMSR for
the original domain suffices to learn the Q-values of a thus modified domain.

? Full thesis available at http://resolver.tudelft.nl/uuid:2945dcc8-e7b9-4536-

b9e7-074cfe86d3f9.
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– Making the Euclidean distances between internal states proportional to their
behavioral similarity renders the formed representation less sensitive to small
estimation errors if the transition or reward functions are approximated.

Research Objective . It is hence theoretically desirable that deep RL agents
learn the CMSR. Yet, we do not know to which extent deep RL agents learn the
CMSR, and whether doing so is useful in practice. Thus, we look at the internal
state representations learned by deep RL agents at various stages during train-
ing and under different training conditions, and compare them to the CMSR.
Furthermore, to elucidate the practical usefulness of learning the CMSR, we con-
trast the learning speeds and consistencies and the generalization performances
of neural networks with hidden-layer representations that differ in how similar
to the CMSR they are, while controlling for other factors.

Contributions. We split our contributions into methodological and experi-
mental ones. Our methodological contributions are as follows:

– We propose using correlation coefficients based on bisimulation metrics to
measure how similar to the CMSR an internal state representation is. These
correlation coefficients also allow to specifically determine whether an inter-
nal state representation is Markov with respect to the rewards or Markov
with respect to the transitions1.

– We introduce an auxiliary loss that pushes a neural network to learn an
internal state representation that is similar to the CMSR in a network layer.

We further provide experimental contributions:

– We identify three overlapping learning phases that together make up the
learning process of deep RL agents using model-free Q-learning agents as
example. Thereby, it is during the second learning phase that internal state
representations become increasingly similar to the CMSR. We also point out
several factors that impact this learning process. The precise CMSR is not
learned in any of our experiments.

– We show that learning a hidden-layer representation that is more similar to
the CMSR during training can speed up the learning process and cause good
solutions to be found more reliably.

– We demonstrate that learning a hidden-layer representation that is more
similar to the CMSR by the end of training may lead to improved general-
ization to new irrelevant feature values. Creating such a representation also
may enable better generalization to related domains with modified reward
or transition functions, as long as the modifications do not render formerly
irrelevant features relevant.

1 A state representation that is Markov with respect to the reward is one in which
knowledge of previous internal states does not lead to a more accurate prediction of
the next reward [4]. The definition of Markov with respect to the transition proceeds
analogously.
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1 Introduction

Modelling words as vectors has been an extremely successful way of representing
word meaning in a manner that can be programmed into a computer [5] [7][9].
Word vectors have been shown to be affected by the ideas and beliefs of the
humans that generated the corpora they are extracted from [1] [10]. Caliskan et.
al. [2] showed that our biases and stereotypical beliefs could also be extracted
from these representations. In order to identify implicit biases held by human
speakers, the results from a physiological test called the Implicit Association
Test (IAT) [4] are used as a benchmark. Caliskan et. al. [2] then compared these
results to that of their Natural Language Processing (NLP) version of the IAT
called the Word Embedding Association Test (WEAT). Utilizing widely adopted
distributional models, mainly focusing on GloVe embeddings [9], they were able
to replicate every association documented by the IAT that they tested. This
leads them to expect that human biases are in general retrievable from statistical
properties of language use.

However, the two test methods used to extract implicit biases from human
speakers on the one hand and from corpora on the other differ clearly in method-
ology. The IAT uses a categorization task between a target concept and attribute.
The WEAT uses a similarity measure to test for bias in the corpus. We investi-
gate whether the same biases are present when using a representation for words
that allows us to model categorization.

2 Method

In order to use this measure of graded hyponymy we must represent the meaning
of words as a collection of their hyponyms. Here we used two different sources of
hyponymy: WordNet [3] and Microsoft’s Concept Graph [8]. We can then con-
struct the representation of a word by adding together all the positive operators
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of a specific word. We use positive operators because they have an ordering to
them called the Löwner ordering which can be interpreted as categorization. To
build the representations of single vector positive operators we take the outer
product of the vector representation of a word with itself, more specifically we
use use GloVe embeddings [9] as the source of word vectors in line with Caliskan
et. al. [2]. By using this representation we can now define graded categorization
using two methods described in Lewis [6] in terms of graded hyponymy (KE and
KBA). The WEAT tests for implicit biases by comparing the similarity of two
sets of comparable target words (e.g., female names vs. male names) against
two sets of opposing attribute words (e.g., pleasant attributes vs. unpleasant at-
tributes) with a null hypotheses that states that there is no difference between
the similarity of either set of target words with the target concepts. We fol-
lowed Caliskan et. al. [2] by using the same method but instead of measuring
the association in terms of similarity, we measured the association in terms of
categorization. The resulting test method for implicit biases in corpora is called
the Positive Operator Association Test (POAT).

3 Results

Table 1 shows that the POAT is able to replicate most of the same results of
the WEAT. The POAT performs well on non-offensive experiments such as the
differential association between flowers vs. insects and pleasant vs. unpleasant.
Additionally, the POAT records stronger stereotyping in the association tested
in the last two rows, as well as in the European-American vs. African-American
– pleasant vs. unpleasant experiment (row 5, Table 1) when using the attributes
from the young vs. old people’s names experiment. Two experiments that were
not replicated well by the POAT are those in row 7 and 8. The first one instead
shows a reversed association, due to inconsistent hyponymy representation, and
the second records a low effect size and a high likelihood of the null hypotheses
holding up.

Some target words had very low numbers of hyponyms, which skewed the
results. To alleviate this problem, which was the case for most experiments that
performed poorly on the POAT in Table 1, we use the same measure as in the
regular POAT, but build the positive operators from the single word embeddings
for each specific word. The results for these tests are presented in Table 2 and
the largest difference in the rows 7 and 8: both now show large positive effect
sizes and slightly smaller p-values compared to those of the WEAT. This version
of the POAT performs best on all tested IAT findings. The found effect sizes are
closer to the IAT effect sizes in 6 out of 8 experiments compared to the WEAT.

Discussion and outlook

In nine out of ten experiments the POAT is able to correctly recognize implicit
biases in the word embeddings. Although the POAT was able to recognize the
implicit biases, the strength that it recorded was sometimes not comparable to
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Target words Attribute words IAT WEAT POAT

NT NA d P d P d P

1 Flowers vs. insects Pleasant vs. unpleasant 25× 2 25× 2 1.35 10−8 1.50 10−7 1.39 10−6

2 Musical instruments vs. weapons Pleasant vs. unpleasant 25× 2 25× 2 1.66 10−10 1.53 10−7 1.47 10−7

3 European-American vs. African-American Pleasant vs. unpleasant 32× 2 25× 2 1.17 10−5 1.41 10−8 0.89 10−3

4 European-American vs. African-American Pleasant vs. unpleasant † 16× 2 25× 2 – – 1.50 10−4 1.04 10−2

5 European-American vs. African-American Pleasant vs. unpleasant ‡ 16× 2 8× 2 – – 1.28 10−3 1.58 10−5

6 Male vs. female names Career vs. family 8× 2 8× 2 0.72 < 10−2 1.81 10−3 1.68 10−3

7 Mental vs. physical disease Temporary vs. permanent 6× 2 7× 2 1.01 10−2 1.38 10−2 −1.51 10−2

8 Science vs. arts Male vs. female 8× 2 8× 2 1.47 10−24 1.24 10−2 −0.001 0.50

9 Math vs. arts Male vs. female 8× 2 8× 2 0.82 < 10−2 1.06 10−1 1.25 10−2

10 Young vs. old people’s names Pleasant vs. unpleasant 8× 2 8× 2 1.42 < 10−2 1.21 10−2 1.29 10−2

Table 1: Effect size (Cohen’s d) and p-values for the WEAT and the POAT using
the KE measure and hyponyms derived from WordNet. Each row concerns a different
implicit bias documented by the IAT. In each case the first (second) set of target words
is found to be more compatible with the first (second) set of attributes words, NT and
NA indicated the number of target words and attribute words, respectively. Bold values
highlight the effect size closest to that of the IAT. † Attributes for this experiment are
the same as in Flowers vs. insects. ‡Attributes for this experiment are the same as in
Young vs. old people’s names.

Target words Attribute words IAT WEAT POAT

NT NA d P d P d P

1 Flowers vs. insects Pleasant vs. unpleasant 25× 2 25× 2 1.35 10−8 1.50 10−7 1.30 10−5

2 Musical instruments vs. weapons Pleasant vs. unpleasant 25× 2 25× 2 1.66 10−10 1.53 10−7 1.30 10−5

3 European-American vs. African-American Pleasant vs. unpleasant 32× 2 25× 2 1.17 10−5 1.41 10−8 1.29 10−6

4 European-American vs. African-American Pleasant vs. unpleasant † 16× 2 25× 2 – – 1.50 10−4 1.18 10−3

5 European-American vs. African-American Pleasant vs. unpleasant ‡ 16× 2 8× 2 – – 1.28 10−3 1.46 10−4

6 Male vs. female names Career vs. family 8× 2 8× 2 0.72 < 10−2 1.81 10−3 1.74 10−3

7 Mental vs. physical disease Temporary vs. permanent 6× 2 7× 2 1.01 10−2 1.38 10−2 1.26 10−1

8 Science vs. arts Male vs. female 8× 2 8× 2 1.47 10−24 1.24 10−2 1.06 10−1

9 Math vs. arts Male vs. female 8× 2 8× 2 0.82 < 10−2 1.06 10−1 1.00 10−1

10 Young vs. old people’s names Pleasant vs. unpleasant 8× 2 8× 2 1.42 < 10−2 1.21 10−2 1.52 10−2

Table 2: This table shows the effect size (Cohen’s d) and p-values for the WEAT and
the POAT using the KE measure, represented without hyponyms. All other settings
are identical to those shown in Table 1

that of the WEAT or IAT due to inconsistent hyponymy representations of the
target and concept words (row 7, Table 1). Neither sources of hyponymy we
used contained an entry for every word. Nor do they contain all hyponyms of
a word and in several cases the entry has zero hyponyms. Therefore, in order
to make this method as dependable as possible the problematic word categories
must be identified and remedied with some other method of deriving hyponyms.
An example word type that for which this issue was prominent are the male and
female pronouns that were part of the IAT experiments.

An advantage we found of our approach to detect biases in word meanings of
the WEAT is that positive operators fit well inside a compositional framework
[6]. This allows us to form phrases and sentences as well as generic sentences.
Generic sentences such as “mosquitos carry malaria” express regularities. Using
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positive operators gives the potential to assess associations between words and
subphrases, such as mosquitos and carry malaria.

Our results shows that the use of the KE measure as a proxy on single
vector positive operators, where the words representations are not built using
their hyponyms, outperforms the WEAT on six out of eight replications of IAT
findings. This indicates that the use of an asymmetric measure to determine
differential association is better at detecting implicit bias in word embeddings
than the symmetric distance measure of the WEAT. The next step should be
to identify exactly why the POAT performs so well on single vector positive
operators.
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Abstract. Knowledge graph embedding models (KGEs) have mostly
been evaluated and compared on generic benchmark datasets. In this
paper we research if training on domain specific datasets instead has any
performance impact. We conducted an hyperparameter search experi-
ment on five KGE models and found that the models perform generally
better on domain specific datasets, although the relative performance
and hyperparameter impact are in line with previous studies.

Keywords: knowledge graph embedding · domain specific dataset · hy-
perparameters · link prediction.

Introduction and Motivation. Knowledge graph embedding (KGE) models have
become popular solutions for the link prediction problem in knowledge graphs.
KGE models learn algebraic representations of the entities and relations in a
knowledge graph and use a scoring function to predict and rank new triples, thus
separating correct from incorrect triples. Various KGE models vary not only in
their embeddings and scoring function, but also in the choice of hyperparam-
eters, most notably loss function and training strategy. This paper researches
the question on whether KGE models perform differently on domain specific
datasets compared to generic ones like Freebase and Wordnet and specifically
which of the studied models perform best and which hyperparameters impact
performance the most. We investigate how certain properties of domain specific
datasets such as ontological structure and redundancy in expressing facts influ-
ence the performance and the selection of hyperparameters. Our experiments
follow the methodology in [3], with which we compare the performance metrics.

Experimental Setup. We trained and evaluated the KGE models in this study us-
ing two domain specific datasets AIFB [1] and MUTAG [2], both bound by strong
ontological information, with very detailed schemas that contain full hierarchies
of classes and sub-classes using the RDF model. We compare performance of five
of the most popular KGE models: RESCAL, DistMult, TransE, ComplEx and
ConvE. Our experiment uses quasi-random search across a large discrete hyper-
parameter space, followed by a Bayesian optimization for fine tuning numerical
ones. The best model is selected using the entity ranking protocol metrics MRR
and Hits@10 after training the five best configurations for each architecture.
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MRR Hits@10

A
IF

B

RESCAL 42.1 56.9
TransE 46.01 59.8
DistMult 49.2 60.1
ComplEx 48.7 60.0
ConvE 47.2 58.7

M
U
T
A
G

RESCAL 35.63 46.65
TransE 26.82 47.39
DistMult 48.07 60.32
ComplEx 38.68 50.49
ConvE 31.63 47.39

Table 1. Performance on test data
of the best performing models.
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Fig. 1. Distribution of filtered MRR (%) on
validation data over the train type/ loss func-
tion combinations during quasi-random hyper-
parameter search.

Results. In our study, DistMult has outperformed the other models on both
domain specific datasets, followed by ComplEx. The relative performance gaps
between the models is vastly reduced compared to the original publications,
attributed perhaps to consistent training methodology. We also noted that the
MRR and Hits@10 scores are remarkably higher for all models on AIFB than
on MUTAG, justified by the existence of symmetrical relations in AIFB and by
the KGE models’ known ability to predict inverse relations.

We observed that the choice of loss function has by far the highest impact
on the performance, followed by the training strategy. With some exceptions,
cross entropy loss and 1vsAll training strategy performed best across the board.
Furthermore, the higher MRR variance across the domain on AIFB suggests that
models are more sensitive to hyperparameter change on AIFB than on MUTAG.

Compared with the results obtained by [3] on FB15K-237 and WNRR, most
models performed notably better in our experiment, which can be explained by
domain specific biases in our datasets. Our study1 showed that domain specific
datasets contribute to better KGE performance mostly due to the ontological
structure and their intrinsic redundancy in expressing facts through the triples.
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1 Introduction

Technology has already had a major impact on the fruit industry. Image recog-
nition for the detection and localisation of fruit is seen as a vital step to improve
yield estimation[5] and therefore actual yields, as well as the automation of har-
vesting.

It is challenging to produce a generalised automation technique for all crop
types because there are large differences in farming techniques across crop types.
Previous research has been successful in developing specific techniques for indi-
vidual crop types. In the case of apples, research has been done in autonomous
apple picking[1][2], automated pruning[7] and yield estimation[8][5]. All of these
tasks require the accurate detection and localization of apples. This is an im-
portant first step, since after detecting apples, one can estimate the size of the
current harvest and make predictions on the final yield. Moreover, detecting and
localizing apples can serve as a basis for assessing their health, detecting pests
and thus support early intervention.

In this thesis we examine the problem of apple detection and localization
as an Object Detection problem, applied to the challenging real-world dataset
MinneApple[6].

We use the Facebook Artificial Intelligence Research’s (FAIR) Detectron2
framework to train a Faster R-CNN and a Mask R-CNN on the MinneApple
dataset and compare results to other state of the art methods.

Detectron2 provides a pretrained 101 layer ResNeXt network that we use as
the backbone for both the Faster R-CNN and Mask R-CNN models. We then
fine-tune these models by adjusting the learning rate and number of iterations
to avoid overfitting.

2 Results

Our first set of results compares the AP scores of each model with various ResNet
backbones. To identify the most suitable backbone network. Table 1 shows a

? This thesis was prepared in partial fulfilment of the requirements for the Degree of
Bachelor of Science in Data Science and Knowledge Engineering, Maastricht Uni-
versity. Supervisor(s): Alexia Briassouli.
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comparison of the AP@[.5:.05:.95] scores with different ResNet backbones. We
see that networks with a ResNeXt-101 backbone score the highest. This is ex-
pected, as larger Residual Networks tend to be able to extract more salient
features better than smaller ones.

Table 1. Comparison of different ResNet backbone networks

Method Backbone AP

ResNet-50 0.398
Faster R-CNN ResNet-101 0.425

ResNeXt-101 0.436

ResNet-50 0.386
Mask R-CNN ResNet-101 0.394

ResNeXt-101 0.441

Our next set of results presents our AP scores for all 6 COCO scoring cat-
egories, with AP@[.5:.05:.95] being our primary challenge metric. Table 2 com-
pares our models’ evaluation results to the benchmarked results, as well as the
current second best score in the CodaLab competition. The competition server
does not give information on what methods the other entries have used but we
have included them for comparison.

2.1 Discussion

From our experiments, we can see that our proposed method has had success in
beating other benchmarked scores. The use of a more accurate model can lead
to a more accurate yield estimation with practical benefits. If scaled, this could
have a major effect on reducing food waste in the agricultural production sector
by increasing yield. As mentioned previously, this sector has the largest food
waste in the food supply chain.

As expected, the deeper ResNet backbones provided a higher score. With
the 101 layer ResNeXt network performing the best for both Faster R-CNN and
Mask R-CNN.

The benchmark results provided by the challenge state that Faster R-CNN
is the best performer. However, an interesting insight is that our Mask R-CNN
outperforms our Faster R-CNN. This could be due to the Mask R-CNN using
semantic segmentation and may have learnt to deal with clusters of apples better
than the Faster R-CNN which only uses bounding boxes.

3 Conclusions

We can see that Detectron2’s Mask R-CNN with a ResNeXt101 backbone achieves
state of the art accuracy on the MinneApple Fruit Detection challenge. At time
of publishing our technique sits at the first place on the challenge leaderboards.[3]
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Table 2. Comparison with Benchmark

Author Method AP@ AP@ AP@ APsmall APmedium APlarge
IoU[.50:.05:0.95] IoU=.50 IoU=.75

Hani[6] Faster R-CNN 0.438 0.775 0.455 0.297 0.578 0.871

Hani[6] Mask R-CNN 0.433 0.763 0.449 0.295 0.571 0.809

Kuka[4] NA 0.436 0.770 0.453 0.285 0.592 0.872

Ours Faster R-CNN 0.436 0.791 0.436 0.291 0.590 0.848

Ours Mask R-CNN 0.441 0.801 0.440 0.300 0.589 0.861
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Abstract. Interactions in the real world are subject to mistakes and
miscommunications. The presence of this noise challenges cooperation, as
one party cannot determine whether the other party did not cooperate
on purpose. Prisoner’s dilemma strategies like Tit-for-Tat (TFT) perform
badly once noise is present. Recent studies that harsh environments
promote cooperation do not take noise into account. We show that
the adversity of the environment benefits cooperators and can make
cooperation more robust against mistakes. Harsher environments also
encourage greater generosity to cope with noise. Yet when uncertainty
is substantial due to higher probability of mistakes or more potential
defectors in the environment, contrite behaviours are the most successful.

1 Motivation and Experimental Design

When environmental adversity is high, cooperation in many species counter-
intuitively increases [1]. In spatial prisoner’s dilemma (PD) games with simulated
harshness, defecting strategies benefit the most at first, but in the long run
cooperating strategies recover and later dominate the game [3]. Information in
real-world interactions is not perfect, however, and errors occur. Strategies that
perform well in a normal PD setting often fail when even occasional mistakes
happen [5]. While various works have studied the effects of noise in spatial PD,
it is unknown how these strategies fare in a harsh environment.

In order to simulate communication errors, we introduce an extra parameter
for noise, E, into a spatial iterative PD simulation. E is the probability that the
desired action of an agent actually results in the opposite action. Under different
levels of cost-of-life, we study 12 different strategies: 9 ‘classical’ strategies (ALLC,
ALLD, RAND, GRIM, TFT, TFTT, STFT, TTFT, Pavlov) [2] and 3 strategies
adapted to handle noise: Generous Tit for Tat (GTFT) and Generous Pavlov
(GPavlov), and Contrite Tit for Tat (CTFT) [5].

2 Results and Discussion

The success of generosity in noisy environments has been widely supported [5].
We find that the importance of generosity is emphasized when the harshness
of the environment increases. This contrasts with the reported success of less
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Fig. 1: Influence of noise in a tournament of TFT variants with varying harshness. S =
sucker’s payoff, K = cost of life, E = level of noise.

generous strategies such as GRIM in harsh environments [4], which confirms the
importance of studying the PD with noise. Second, under higher noise, contrition
is found to outperform generosity. The same phenomenon can be observed in
the classic IPD [5]. The advantage of CTFT is that it works well in overtaking
environments with defectors, while generous strategies rely on the presence of
other cooperating strategies to succeed.
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The aim of this thesis is to develop a scalable algorithm for multilinear regres-
sion [1]. Multilinear regression resides between linear and nonlinear regression
models, such as neural networks (NN), which are widely used machine learning
tools. While linear regression is simple and interpretable, it is less capable of mod-
eling complex phenomena than its nonlinear counterpart. Multilinear regression
is a trade-off between both, resulting in an expressive model with more meaning-
ful variables than in NNs, as it is based on multilinear algebra. Unfortunately, the
number of coefficients of a multivariate polynomial depends exponentially on its
degree. In this thesis, we employ a low-rank tensor decomposition to break this
exponential dependency, known as the curse of dimensionality (CoD), allowing
us to develop a scalable, optimization-based algorithm.

Tensors, or multiway arrays, are higher-order generalizations of vectors and
matrices. Tensor analogues of established matrix decompositions are powerful
tools in signal processing, data analysis, and machine learning [2]. The main
advantage of using tensor decompositions within this work stems from their
ability to break the CoD. The polyadic decomposition (PD) decomposes an
Nth-order tensor T as a sum of rank-1 tensors, where a rank-1 tensor is equal
to the outer product, denoted by ⊗, of N nonzero vectors:

T =
R∑

r=1

crb
(1)
r

⊗ · · · ⊗ b(N)
r

def
=

r
c;B(1), · · · ,B(N)

z
. (1)

An Nth-order tensor of size I× I×· · ·× I suffers from the CoD since it contains
IN entries. By approximating such a tensor with a low-rank PD, i.e., a PD with
low R, that only has NRI parameters, this curse is broken.

An Nth-degree homogeneous polynomial p(x) with variables x ∈ RI can be
expressed by means of a symmetric3 tensor of order N and the mode-n product4:

p(x) = T ·1 xT ·2 xT · · · ·N xT. (2)

? This research received funding from the Flemish Government (AI Research Pro-
gram). This work was supported by the Fonds de la Recherche Scientifique – FNRS
and the Fonds Wetenschappelijk Onderzoek – Vlaanderen under EOS Project no
30468160 (SeLMA). KU Leuven Internal Funds: C16/15/059 and IDN/19/014. Nico
Vervliet is supported by a Junior postdoctoral fellowship (12ZM220N) from the Re-
search Foundation—Flanders (FWO).

3 A symmetric tensor is invariant to every possible permutation of its N dimensions.
4 The mode-n product ·n of A ∈ RI1×···×IN and B ∈ RJ×In is defined as (A ·n
B)i1...in−1jin+1...iN =

∑In
in=1 ai1...iN bjin .
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For example, a degree-two homogenous polynomial can be written as p(x) =
xTTx = T ·1 xT ·2 xT. We assume that T has approximately low rank. This
makes sense as real-life data can often be modelled using parsimonious represen-
tations due to some inherent structure. For example, measurements of a physical
property that are governed by underlying differential equations or the dataset
of a recommender system that contains users which behave in similar patterns.
Compact models such as low-rank matrix and tensor decompositions are often
used for large-scale problems in scientific computing and compressed sensing [3].

Thanks to this low-rank assumption, T in Eq. (2) can be replaced by a low-
rank PD. The symmetry of T is exploited to obtain an even more compact model
by using a symmetric PD, i.e., B(n) = B for 1 ≤ n ≤ N , which requires fewer
parameters than a general PD, namely RI. Therefore this model avoids the CoD

since a multivariate polynomial generally has (I+N−1)!
N !(I−1)! coefficients.

In order to derive an optimization-based algorithm, we fit the PD-constrained
regression model to a dataset X ∈ RI×M ,y ∈ RM as the following set of linear
equations with a structured solution in a compressed-sensing style approach [4]:

y ≈ (X�T X�T · · · �T X) vec (Jc;B,B, · · · ,BK) , (3)

where �T denotes the row-wise Khatri–Rao product.
To compute the model variables B and c, we use a Gauss–Newton (GN) al-

gorithm with dogleg trust region to minimize the cost function 1
2 ||r||

2
2 in which

r equals the difference between the left and right hand side of Eq. (3). By si-
multaneously exploiting both the Khatri–Rao and PD structure in Eq. (3) in
the derivation of the cost function, gradient, Jacobian and Gramian for the GN
algorithm, we obtain a scalable algorithm. Indeed, the overall per-iteration com-
plexity of the algorithm is O(MR2I2), in contrast to O

(
MRNIN

)
for a naive

algorithm that does not exploit all structure.
To conclude, we have formulated a scalable optimization-based algorithm for

multilinear regression through the use of a low-rank symmetric PD. In [5], we
demonstrate high accuracy of our model on a materials science dataset.
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Fig. 1. The BrS positive pat-
tern [7].

The Brugada Syndrome (BrS) is a severe car-
diovascular disease that can lead to a sudden car-
diac death even in patients with structurally nor-
mal hearts [2]. Ever since its first description [2],
only one clear diagnostic case is acknowledged,
characterized by an anomaly in the electrocardio-
gram (ECG); an accentuation of the J wave found
in the right precordial leads (V1, V2), which results
in an ST-segment elevation that is often followed
by a negative T-wave [2], see Figure 1.
In the following, we present an automated pipeline
that transformed scanned images of ECGs to time-
voltage data, which is then used as basis for our long short-term memory (LSTM)
[5, 3] classifier able to differentiate BrS positive ECGs from negative ones.

The digitization process follows an automatic pipeline that transforms scans
of ECG images, comprising three distinctive image types (e.g., background and
foreground color). A full description of the process can be found in [6].
First, the images are gray-scaled and rotated if needed. Then, obstacles, such
as a black frame surrounding the signals or the background grid, are removed.
Thirdly, we split the sequences into distinctive images by summing over the pixels
in its columns. We use the minima in between peaks of pixels, each representing
a single signal, as cut off points. Finally, every signal is upsampled and then
mapped to time-voltage coordinates. For most of the ECG leads, the pipeline
preserves the signals, see Figure 2. Yet, some sequences cannot be separated,
leading to distortion.

The classifier’s task is to read-in ECG images and make a binary decision of
whether it is BrS positive or negative. We gathered positive ECGs (30 in total)
with our pipeline while extracting negative examples (80 in total) from the PTB
Database of Physionet [1], [4]. Our model is composed of a single LSTM-layer
followed by a dropout layer and a sigmoid activation function for classification,
its entire architecture and training process is described in the thesis [6].

? This work was supported by the project IRP8: IMAGica: an Integrative personalized
Medical Approach for Genetic diseases, Inherited Cardiac Arrhythmias as a model.
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True

BrS+ BrS− Total

Predicted
BrS+ 22 45 67
BrS− 0 24 24
Total 22 69 91

Table 1. Confusion Matrix of our LSTM
model.

Given the limited amount of data,
the classifier scores a high amount of
false positives, while avoiding any false
negatives, see Table 1. In a medical
context this might be favorable, as one
would prefer to perform additional test
rather than to miss a diagnosis, however, before it becomes relevant for any prac-
tical purpose, further improvements and testing has to be conducted.

Fig. 2. The outcome of the digitization process for two ECG image types. The top
image displays a good result the bottom image a distorted one.

We presented an automated pipeline capable of transforming scanned ECGs
to time-voltage data. Furthermore, we explore the capabilities of the LSTM-
based classifier on differentiating BrS positive ECGs from negative ones. Further
research and experimentation are needed for obtaining a classifier achieving bet-
ter performance. Another aspect is to investigate the role of different segments
of the ECGs in the classification as positive for BrS.
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1 Introduction

In 2015 the Katwijk beach was used to imitate a Martian landscape to allow
for a planetary rover to collect an abundance of data from multiple sensors
[4]. This dataset is available for public use, with the intention of applying and
testing Simultaneous Localization And Mapping (SLAM) techniques. For this
thesis the focus was on the data collected from the stereo camera mounted on
the rover. The research goal was to create an accurate 3D map with a correct
location description. To reach this goal three SLAM techniques were applied to
the stereo camera data. These techniques were: visual SLAM using Point clouds,
Structure from Motion, and a combination of both.

2 Visual SLAM using Point Clouds

Visual SLAM was performed by first rectifying the left and right images of the
stereo camera, followed by combining both images into a disparity map. The
result is a point cloud, with for each point a distance estimate and a color.
The point clouds are down-sampled into a 3D grid, with an average color for
each cube. Following, the cubes are matched with the Iterative Closest Point
algorithm [2]. By combining all point clouds one can create a 3D map and
estimate the trajectory of the rover.

Fig. 1: Example of merged point clouds, depicting two stones in 3D.

The Visual SLAM maps were accurate when applied locally, but when applied
on longer trajectories it is difficult to maintain a correct location estimation,
because a majority of the points in the cloud display patterns which can be
found on multiple locations.
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3 Structure from Motion

Structure from Motion works differently in that it uses a limited number of key
points in the landscape to map the environment, rather than the uniform dis-
tributed point clouds down-sampled in a grid. In this thesis Speeded-Up Robust
Features (SURF) was chosen to identify the key points, because it is invariant
to scale and photometric variations [1].

Fig. 2: Visualisation of the matching key points across two images.

The result is a trajectory estimate more accurate than the visual SLAM
estimate, however the 3D map was visually incomprehensible from a human
standpoint. This is because the map consisted of colourless points. Furthermore
are the features close by more prominently represented, the stones were in most
instances not close enough to register, as can be seen in Figure 2.

4 Combination

Both techniques have aspects which could be improved. The camera position
estimate of visual SLAM is vulnerable to accumulation errors. Structure from
Motion suffers from difficult map comprehension. A possible solution to both
these problems would be to use the map representation from visual SLAM and
the camera position estimate from Structure from Motion, to get the best of
both approaches. The results of this combination can be found in the thesis [3].

5 Conclusion

Using the point clouds from visual SLAM and the location estimations from
Structure from Motion, this thesis was able to create a visually more compre-
hensible map with a more accurate location estimation of the rover. The results
indicate that by combining the techniques a better performance on both map-
ping and localisation can be achieved, therefore one would encourage further
testing on the combination of these techniques.
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Abstract. In this study, we investigate the effects of conditioning Inde-
pendent Q-Learners (IQL) not solely on the individual action-observation
history, but additionally on the sufficient plan-time statistic for Decen-
tralized Partially Observable Markov Decision Processes. In doing so, we
attempt to address a key shortcoming of IQL, namely that it is likely to
converge to a Nash Equilibrium that can be arbitrarily poor. We identify
a novel exploration strategy for IQL when it conditions on the sufficient
statistic, and furthermore show that sub-optimal equilibria can be es-
caped consistently by sequencing the decision-making during learning.
The practical limitation is the exponential complexity of both the suffi-
cient statistic and the decision rules.

Keywords: Deep Reinforcement Learning · Multi-Agent · Partial Ob-
servability · Decentralized Execution.

Introduction: The Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) is a widely used framework to formally model scenarios in which
multiple agents must collaborate using private information. A key difficulty of
a Dec-POMDP is that to coordinate successfully, an agent should decide on
actions not only using its own action-observation history, but also by reasoning
about the information that might be available to the other agents.

Independent Q-Learning (IQL) [1] is an easily-scalable multi-agent Reinforce-
ment Learning method in which each agent concurrently learns the value of indi-
vidual actions based on its individual information. It is well understood that such
individual action-values are insufficient to capture the inter-agent dependency,
and consequently IQL is not guaranteed to converge to the optimal joint policy.
Instead, it is likely to converge to a joint policy that is in Nash Equilibrium [2].
However, such equilibria can be arbitrarily poor.

Precisely the obliviousness of IQL to the presence of other learning agents
is our motivation for additionally conditioning IQL on the sufficient statistic for
Dec-POMDPs [3], which contains a distribution over the joint action-observation
history induced by the joint policy followed thus far. As a result, each agent is
then equipped with an accurate belief over the local information available to the
other agents, and is able to adjust its own behavior accordingly.
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Experiments: We train a Deep Q-Network for each agent that conditions on

the individual action-observation history θ
i

t and the sufficient statistic σt, and

learns the value of individual actions Qit(θ
i

t, σt, a
i
t). Methods are evaluated in the

two agent Decentralized Tiger environment, whereby a horizon of 3 is employed.
To escape poor equilibria, an exploratory action of one agent should be ob-

servable to the others. To accomplish this, our agents explore in the space of
entire decision rules. The sufficient statistic captures such decision rules, and
thus facilitates the communication of exploratory actions among the agents. Im-
portantly, however, the sufficient statistic summarizes only the history of joint
decision rules. For current exploratory decision rules to be observable to others,
we therefore additionally sequence the decision-making during learning. Specif-
ically, agent 1 acts first and agent n is last to act. Each agent i then addition-
ally conditions on the current (possibly exploratory) decision rules δ1:i−1

t of the

agents that acted before it to learn Qit(θ
i

t, σt, δ
1:i−1
t , ait). Our learners are able

to consistently escape sub-optimal equilibria and learn the optimal policy, even
when we explicitly force such equilibria upon the agents initially (Fig. 1).

Fig. 1: All 50 learning curves.

Average Reward (std) 5.00 (0.77)

Ratio Optimal Policies 0.92

Table 1: Results across the 50 runs.

This project had received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 758824 —INFLUENCE).
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The enormous growth in the amount of papers published that the scientific
community has experienced demands preliminary information extraction from
scientific articles; due to time constraints researchers cannot read and under-
stand all published scientific articles within their domain. Constructing knowl-
edge bases containing information corresponding to these published articles has
become an important task in streamlining scientific research. We work towards
an end to end system that, given some large corpus of scientific articles, builds a
bipartite graph containing dataset nodes on one side, and articles on the other.
Dataset X and article Y will have an edge between them if and only if dataset
X was used in article Y. This knowledge graph can be applied to, for example,
extending a scientific literature search engine with a feature that allows users to
explore datasets. The full paper can be found at [3].

The task at hand can essentially be divided into two sub-tasks. First there
is dataset mention extraction, this entails identifying the phrases in the
text that refer to a dataset. This task is an example of Named Entity Recogni-
tion (NER). Second, entity clustering, this entails partitioning the identified
dataset mentions so that partition contains all the dataset mentions correspond-
ing to one real world dataset. This task is an example of cross-document coref-
erence resolution.

Allenai’s sciBERT was used for the named entity recognition task, sciBERT
is a BERT model pre-trained on scientific text [1]. A dataset of sentences con-
taining dataset mentions was constructed using 15 000 scientific articles taken
from NIPS, SIGIR, VISION and SDM. The final dataset contained 6000 BIO-
labeled sentences, 2864 of these sentences had a dataset mention. The model was
evaluated on a zero-shot test set, this entails that all of the datasets in this set
(e.g. CIFAR-10) are not in the training data. The network obtained a tight fit
of the training data, with an ’exact’ f1 of 0.93. This fit reflected well onto both
the evaluation and test set, where the F1 scores are 0.88 and 0.84, respectively.

When observing the performance of our model it becomes apparent that the
model has little added difficulty correctly classifying dataset mentions that occur
in sentences with more than 4 positively labelled instances. This means that the
network is also able to understand and interpret ellipses and summations, these
more complex rules and structures are not harder for the network to identify than
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simple, one- or two-word dataset mentions. These structures and patterns are
difficult even for human annotators to consistently parse and classify correctly,
making the networks ability to understand the nuances of the labelling task
significant.

For the entity clustering a task-specific algorithm was developed based loosely
on [2]. The choice to divert from established practice and implement a custom
solution was made in large part due to the specific nature of the entities to be
clustered (i.e. they all describe datasets). This aspect of the problem allowed
for assumptions and steps that improve performance significantly. Examples are
assumptions that can be made with respect to the lexical structure of the en-
tities, in particular the important role that numbers play in denoting datasets
(CIFAR10 vs CIFAR100). In short, the developed algorithm first normalises the
entities within the input data, and performs intra-document clustering: entities
within each document are clustered using lexical similarity. Afterwards, a linear
interpolation of similarities in a lexical, semantic and document level space are
used to construct a graph G where each node represents the groups of dataset
mentions found within an article. Lexical similarity was expressed in character
level n-gram tf-idf cosine similarity, semantic similarity using sciBERT sentence
embeddings cosine similarity and the document similarity was expressed using
gensims doc2vec model trained on our corpus of 15 000 scientific articles. The
edges in G express similarity, and all edges below a certain value are dropped.
Each component in G now corresponds to an equivalence class of intra document
coreferring entities.

The algorithm attained a B-cubed F1 score of 0.86. When performing grid
search of the linear interpolation parameters of the lexical, semantic and doc-
ument similarities it was found that the algorithm relied heavily on the lexical
distance, while also using document level information. The sciBERT sentence
embeddings expressing semantic similarity did not add much to the models abil-
ity to correctly cluster dataset mentions, and the top performing set of param-
eters did not use them at all.

Several steps must be taken before the developed system is ready to be de-
ployed and utilized in a practical setting. First, the entity clustering algorithm
must be expanded to parse ellipses and summations separately, and split them
into their separate elements. Further, the computational complexity of the entity
clustering remains an issue, due to the distance based nature of the algorithm it
complexity scales quadratically with the input size. Finally, end-to-end evalua-
tion should be performed of the system. While the systems’ performance for each
of the two subtasks was thoroughly evaluated, the overall, end to end system was
not evaluated properly. This is, of course, an essential step in the development
and deployment of the system.
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Concurrent changes in physiological signals between people (Physiological Syn-

chrony) can provide insight into attentional processes in groups, and individuals in re-

lation to the group, for instance in educational settings. Earlier work showed that indi-

viduals can be correctly classified into attentional groups (attending or not attending to 

a story) based on the degree of synchrony with members of known groups (either in-

structed to attend or not attend to a story). Here we examine whether it is possible to 

find attentional groups from synchrony data using unsupervised learning, which may 

enable the identification of attentional groups without knowing anything about possible 

attentional foci beforehand as may be the case in real-world situations.  

This study is based on data from [1] (publicly available on 

https://github.com/ivostuldreher/physiological-synchrony-selective-attention), where 

half of the participants were asked to focus on the story told by an audiobook, while the 

others were asked to focus on separate sound stimuli, occurring during the story. All 

participants heard the exact same audio file - only the instruction differed for the two 

attentional groups - and physiological signals were recorded during the experiment 

from three modalities (EEG - electroencephalography, EDA - electrodermal activity or 

skin conductance, and heart rate). From these signals, physiological synchrony was 

computed for each modality to assess the level of correlation between participants. Each 

synchrony coefficient represents the extent of synchronous change of physiological sig-

nals between two participants [1]. 

First, we investigated whether it is possible to classify people according to their at-

tentional focus, by clustering synchrony values between participants as input. Cluster-

ing is a kind of method to find groups in the data without knowing any data labels (in 

this case, membership of the true attentional group). A straightforward approach is to 

directly apply specific clustering algorithms on the pre-processed synchrony data. Such 

kind of algorithms like hierarchical clustering or K-Medoids can cluster data without 

using coordinates but rather distances between points, which is the kind of information 

in the pre-processed synchrony data. The data appeared to be not easily clusterable, 

resulting in low performance (e.g. an accuracy of 65% when clustering EEG with hier-

archical clustering). We then investigated adding a step before clustering, with different 

mapping methods which can be used to visualize and remove noise from the original 

synchrony data. Principal Coordinate Analysis (PCoA), Multi-Dimensional Scaling 

(MDS), or Uniform Manifold Approximation and Projection (UMAP) were used, with 
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the aim of finding coordinates which approximate the pre-processed synchrony data. 

Then, several clustering algorithms like K-Means, spectral clustering or hierarchical 

clustering were applied on these computed coordinates to provide two groups of par-

ticipants. We studied each possible combination of mapping and clustering algorithms. 

We achieved the highest performance with EEG, with a classification accuracy of 85% 

obtained when mapping with PCoA and using spectral clustering. EDA and heart rate 

did not perform above chance level. 

After demonstrating that unsupervised detection of attentional groups is possible for 

EEG, we continued to look into combining the information coming from different mo-

dalities (EEG, EDA and heart rate) in order to possibly enhance the information coming 

from only one modality. Mapping methods like Multi View Multi-Dimensional Scaling 

(MVMDS) or Multi View Spectral Clustering (MVSC), which can be seen as an exten-

sion of respectively PCoA and spectral clustering, enabled us to combine the infor-

mation present in several input matrices to create a map with all participants. We found 

that adding EDA to EEG did not improve the accuracy of the results, but made them 

more robust to varying pipelines than using EEG alone: the worst result using EEG 

alone was 54% accurate, whereas the worst result when EEG and EDA were combined 

was 73% accurate. From all combinations and pipelines, the best result was achieved 

by combining EEG and heart rate, where results were more robust and more accurate 

than EEG alone, with an accuracy of 92% when applying K-Means after MVMDS. 

Combining three modalities rather than only adding EDA or heart rate to EEG did not 

seem to further improve performance.  

Finally, we investigated how to approach the problem of choosing the proper classi-

fication pipeline for real world cases that our data may not generalize to. In the current 

study, we could use our known attentional groups to evaluate the clustering perfor-

mance. However, in real-world applications, this ground truth information is usually 

not available. We therefore studied the silhouette coefficient to assess clustering qual-

ity, and investigated its correspondence with the ground truth accuracy. Unfortunately, 

the data appear to be too noisy to successfully use this coefficient to choose good clus-

tering pipelines among all methods.  

In sum, our study indicates that it is possible to use unsupervised clustering on phys-

iological synchrony data to identify groups with different attentional foci. Performance 

is close to that reached using knowledge of attentional groups, i.e., classifying an indi-

vidual into a known attentional group that he or she correlates with most strongly [1]. 

Similar as in [1], we found that physiological synchrony in EEG is more informative 

than EDA and heart rate. However, adding heart rate or EDA to EEG results in classi-

fication performance that depends less on the specific pipeline.  
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For this research, a computational social creativity [6] simulation has been devel-
oped using the Variational Autoencoder (VAE) [4] as a computational model of
conceptual spaces. Due to their probabilistic nature and their compression and
generative capabilities, VAEs are a good fit for mechanising conceptual spaces.
Based on these characteristics this research assumes that the VAE is a reason-
able abstraction of conceptual spaces. Subsequently, the simulation investigates
how the conceptual spaces are influenced by social interactions.

Creativity is a social phenomenon. As individuals share their perspectives,
ideas emerge that none could have had on their own [7]. These perspectives
are embedded in an individual’s conceptual space, which plays a central role in
the search for novel ideas and artefacts. In a general cognitive view, Gärdenfors
[3] proposes conceptual spaces are geometric mental structures that organise
thought. In the context of creativity, conceptual spaces are a key aspect in Bo-
den’s framework for creativity to support the explorative and transformative
modes of creativity [1]. However, due to her abstract definition, it is difficult to
use for computational purposes. By combining Boden’s approach for examining
and Gärdenfors’ geometric view for traversing conceptual spaces, this research
proposes to model conceptual spaces using VAEs.

The widely accepted systems view of creativity [2] is used as the basis of
the simulation. In this view, creativity is observed in the interactions between
its three components: the domain, the individual, and the field. The domain
is an abstract cultural repository, the individual produces variations based on
knowledge held in the domain, and the field is a social space for the individuals
where variations are selected to be preserved in the domain.

By using VAEs to model each individual’s conceptual space, the domain is
distributed amongst all of the individuals. To allow the analysis of the simulation
a pretrained global VAE is introduced as an overarching view of the distributed
domain and determines the initial training of the agents. During the simulation, a
recommender system uses a shortcut to the global VAE to serve as a matchmaker
to find ‘like-minded’ agents, acting as a proxy for socio-cultural gatekeepers (e.g.
art galleries) by enforcing the fields ideology.

Each round in the simulation consists of three steps. During the first step,
each agent receives artefacts selected by the field, then trains their conceptual
space and produces new variations guided by their preference for novelty. In the
second step, the recommender system determines the position of each agent.
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Finally, the artefacts for the next round are selected from the pool of artefacts
produced by the agent and its neighbours, as determined by the fields’ ideology.

The evaluation of the VAEs shows that finding the correct scale of artefacts
selected and produced and the amount of training each round is crucial for the
maintenance of conceptual spaces. Initially, a small scale and a high number
of training epochs resulted in heavy overfitting from round to round. With an
increased scale and a lower number of training epochs, the VAEs stabilized,
suggesting the adaption to the artefacts selected by the field.

To investigate the influence of ideologies on the development of conceptual
spaces distributed across fields, three were simulated: neutral, progressive and
conservative. The neutral ideology is the same as no ideology and uniformly se-
lects artefacts. The progressive ideology favours artefacts in less explored areas.
The conservative ideology favours frequently and recently selected artefacts. As
the progressive ideology pushes for exploring novelty it leads to a better main-
tenance of the conceptual spaces, exposing the individuals to a diverse range of
artefacts. Conversely, the conservative ideology deteriorates, likely because the
same artefacts are too frequently selected.

On the individual level, a novelty preference was introduced by changing the
standard deviation used when sampling the latent spaces to generating new arte-
facts. Novelty can be viewed as the disruption of expectedness [5]. Sampling with
a lower standard deviation produces less unexpected results, while a higher stan-
dard deviation pushes towards the edges where less information is embedded.
The results show that a higher novelty preference leads to more distributed in-
teraction between the agents (Fig. 1). While the maintenance is stable, the VAEs
are less performant compared to simulations with lower novelty preferences.

The utility of Variational Autoencoders is demonstrated for use during the
simulation and as a tool for analysing creative behaviours and output. Addition-
ally, the influence of different ideologies of the field and novelty preferences of
the individuals has been explored and shows that the maintenance of the VAE is
aligned with the social interactions of the individuals. This contribution suggests
the possibility of evaluating creative output on learned relations without the use
of predetermined rules.

Fig. 1. The communication matrices indicate the number of interactions between the
agents. With a low novelty preference, the individuals tend to stick with individu-
als with similar conceptual spaces, while higher preferences leads to more distributed
communication.
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1 Introduction

Air Traffic Control (ATC) is absolutely essential in aviation, and air traffic con-
trollers have the highly taxing job of directing all air traffic within a specific
region, preventing accidents, giving information to pilots and more. Since ATC
is so important, all efforts must be made to ensure that ATC communication
happens optimally and efficiently, without error. Any effort to assist the air
traffic controllers or pilots in their communication is therefore warranted.

An example of a system that can assist air traffic controllers and pilots is
a system which detects errors in communication, such as errors in repeating
instructions and callsigns, known as readback errors. What follows is an example
of how an undetected readback error can lead to dangerous situations.

On the 7th of March 2016, at EuroAirport Basel Mulhouse Freiburg, a serious
incident took place due to a combination of factors [1]. A readback error by a
pilot was not corrected by the air traffic controller, which led to two planes being
on the same runway at the same time. The planes missed each other by a mere
115 meters, which is a very small distance in these kinds of situations.

A system that could automatically detect this type of error, and warn pilots
or controllers, could improve overall aviation safety. To build such a system, or
a related system, a sufficiently fast and reliable automatic speech recognition
(ASR) system is required.

Currently, few ASR systems have been developed for ATC on the whole.
According to Helmke et al. [3], efforts to bring ASR into the domain of ATC
have been made as early as the 1990s. However, no instances of using sequence-
to-sequence models for ATC have been found, which is the gap in the field that
this work aims to fill.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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2 Background

2.1 Air Traffic Control

There are, unfortunately, factors that make the ATC domain a difficult do-
main to implement ASR into. These specifics are, amongst others, high levels of
noise, non-native speakers (accents), standardised special phraseology and per-
haps more importantly, deviations from this standard phraseology. Additionally,
ATC communication is rapid and thus lightweight and fast ASR solutions are
required.

2.2 Sequence-to-Sequence Model

The sequence-to-sequence model architecture that was taken as the basis for
the experiments in this work, is the recently published model architecture by
Hannun et al. [2]. The authors show that the model architecture performed
well when trained and tested on the LibriSpeech dataset [4], where it attained
a word error rate (WER) of 15.64 without an external language model, 11.87
in combination with a 4-gram language model and 9.84 with a convolutional
language model, when evaluated on the slightly more challenging ‘test-other’
test set from LibriSpeech [2].

The model architecture’s most interesting and novel feature is the use of
time-depth separable (TDS) convolutions, which, as the authors claim, generalise
better than other deep convolutional architectures and use fewer parameters.

3 Methods, Results and Conclusion

As mentioned, the model architecture by Hannun et al. was taken as the basis for
the experiments in this work. Several approaches were taken for attempted im-
provements of the model architecture, ranging from increasing receptive fields of
the aforementioned TDS convolutions, to increasing the amount of TDS layers.
The training configuration was manipulated in several ways to improve conver-
gence and thus improve performance.

The best-performing model that was made in this work, scored a word error
rate of 26.19% on noisy, low-quality ATC data, and 5.9% on relatively clean
data. It is important to mention that these tests were conducted without external
language models, leaving room for further improvements. The high WER on the
noisy data can be largely attributed to its noise, which caused some utterances
to be nearly unintelligible, even to a trained ear. Addressing these issues would
be key for improving performance, which could perhaps partially be done by
improving the robustness of the model.

With these results in mind, it can be stated that in the future, sequence-to-
sequence models in general might be a viable option for an ASR model for ATC,
and time spent further developing these models would be well spent. All in all,
a solid contribution to the field of automatic speech recognition for air traffic
control has been made, since the absence of sequence-to-sequence models in this
field has been concluded.
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Abstract. Cone beam CT scanners use much less radiation than to normal CT scans. How-
ever, compared to normal CT scans the images are noisy, showing several artifacts. The UNet
Convolutional Neural Network may provide a way to reconstruct the a CT image from cone
beam scans.

1 Introduction

Many people die annually from the effects of cancer. Most common and one of the deadliest type
of cancers is lung cancer [1]. Primarily, lung cancer is being monitored using a CT scanner. The
regular dose of a lung cancer ct scan is 1.5 millisieverts. This amount of millisievers forces the
patient to take long brakes between the CT scans [2]. Cone beam CT scans are CT scans with
much less radiation that can achieve relatively high image quality. However, there is more noise in
the image than a regular CT scan [3].

CT image quality depends on the following factors: image contrast, spatial resolution and image
noise. A Cone Beam Computed Tomography (CBCT) its ray source is cone-shaped and a two-
dimensional detector is used that makes one rotation so that a ‘volume’ of data is obtained. The
main advantage of the cone beam CT scanner is that it uses much less radiation compared to
normal CT scans. The main disadvantage is that because of this, the quality of the image goes
down (black ‘stains’, or group of pixels, appear in the image, on top of the general CT image noise).
Artificial neural networks may provide a solution to this problem. In particular, we developed a
U-NET model to improve the cone beam CT images so that they are ‘restored’ as good as possible
to the quality of a normal CT scan. The question we addressed in the research described in this
paper is: How can a U-NET model, consisting of convolutional and deconvolutional layers, be used
to improve 3D cone beam image quality of lung CT scans?

2 Model

Typical Convolutional Neural Networks (CNN’s) consists of a convolution operation, Non-linearity
(activation) function, pooling and fully connected layers. The convolutions create feature maps from
the original input image. Because of this it can find recognizable patterns in the image. Different
types of filters can be used depending on the type of feature maps one wants.

The U-NET model [4], developed to tackle the noise problem that occurs in CBCT images,
consists of convolutional layers and transpose convolutional layers. This way, patterns can be found
on ‘what’ is in the image, but also ‘where’ it is. When it is in the decoding path, it performs
concatenation operations with the encoding blocks. This way, high resolution feature maps from
the encoding blocks are being concatenated with the upsampled features. This will better learn
representations with following convolutions and is also the main contribution of a U-NET model.
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3 Experiments

To prove the principle, in this research a DICOM data set has been used that first had to be
decoded to only get the raw pixel data on which the model can learn. Horovod has been used for
data parallelism during the training. Later on, this might be extended to model parallelism to train
on even larger image sizes if necessary. The U-NET model has been trained on 32x32x8, 64x64x16,
128x128x32, 256x256x128 and 512x512x128 image sizes. The images below show the results for an
original image of size 256x256x64.

(a) Original image. (b) Cone beam image. (c) Reconstructed image.

From the image results, it is clearly noticeable that the U-NET model does a pretty good job
in recreating the image with added noise. Only the small white matter in the middle of the lungs
it has trouble with. We also found that the loss decreases as the image size increases. This also
means that the U-NET model has greater precision on the 512x512x128 image due to the amount
of feature maps it creates with each convolutional layer. The downside to this, is that it leaves a
large memory footprint on the GPU when using large image size.

4 Conclusion

In short, it can be concluded that the U-NET model is suitable for recreating cone beam images
and performs best at the image size 256x256x64. Furthermore, the U-NET may be directly applied
to the CBCT images acquired from a commercial CBCT scanner after decoding the images and
can directly be applied to real world problems.
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Rationale In my thesis, I developed implementations of safe statistics: a new
framework for collecting evidence for hypotheses, particularly suitable for online
and sequential learning [1]. Currently, p-values and (frequentist) confidence in-
tervals are the most widely-used methods for collecting evidence for hypotheses.
However, with these methods, error bounds are only guaranteed if the number
of samples for each experiment and the number of experiments are fixed in ad-
vance. This means these statistics should not be used in an online setting (a
prototypical example is A/B testing); would one do this anyway, the probability
of obtaining false “significant” results would approximate 1 as the number of
data points collected grows. Since feasible, easily implementable methods that
are robust under online use have not been available to the research community,
classical methods have been used anyway, with many expensive false-positive
findings as a consequence.

Similarly, standard statistics also do not provide guarantees in the common
situation that experiments (e.g. randomised trials) are conducted sequentially,
when the decision to start a new experiment is based on previous results [3].
It directly follows that meta-analysis results, and even combined evidence from
multiple experiments performed within the same research group can be mis-
leading. The safe statistics framework provides methods that can be used to
analyse data in real-time, and to effortlessly combine statistics from sequential
experiments.

Safe statistics Within the safe statistics framework, random variables called E-
variables4 are used to represent the evidence for a hypothesis in the data. By
definition, an E-variable is a nonnegative random variable that has an expected
value of at most 1 under the null hypothesis H0. The higher an E-value, the more
evidence there is in the data in favour of the alternative hypothesis H1. From

? Two-page abstract of the master thesis written by Rosanne. J. Turner at Leiden
University for the Master Statistical Science for the Life and Behavioural Sciences,
defended September 23, 2019, see [4].

?? Corresponding author: Rosanne J. Turner, rosanne@cwi.nl
4 called S-variables in the previous versions of the framework and my master thesis
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the definition of E-variables, it can straightforwardly be derived that when we
use the rule that we reject H0 when the E-value exceeds 1

α for some α ∈ [0, 1],
we have a test where the probability of falsely rejecting the null is bounded by
α. The definition also implies that all E-variables can be used in the sequential
setting simply by multiplying them. It also turns out that a special subset of
E-variables can be used in the online testing setting [1].

To optimise the amount of evidence collected, an information-theoretic cri-
terion for good E-variables was defined: GROW, which stands for Growth Rate
Optimal in the Worst case [1]. GROW E-variables tend to grow fastest for some
alternative hypothesis H1,δ : {Pθ1 : θ1 ∈ Θ1(δ)} defined by a distance metric
δ, even in the worst case scenario where data are generated by a distribution
in H1,δ that yields little evidence. It turns out that these GROW E-variables
have the form of Bayes factors and can be derived for any pair of hypotheses H1

and H0 [1], but the corresponding prior distributions are sometimes completely
different from what Bayesian machine learners or statisticians would normally
use.

Results and short discussion For this thesis, I developed GROW E-variables
equivalent to two classical frequentist hypothesis tests: the two-by-two contin-
gency table test and its stratified version, the Cochran-Mantel-Haenszel test.
Two versions of the E-variable were developed. For the first version, H1,δ was
defined with δ the Kullback-Leibler divergence. This E-variable could be useful
when one wants to design a test optimised for distributions that would yield
a certain minimal growth rate if they would generate the data. For the second
version, H1,δ was defined with δ the absolute difference between the proportions.
Such an E-variable is useful when one has more clear ideas about the applied
goal of the experiment and wants to detect a minimal difference between two
groups.

For the ‘minimal absolute difference’ version, the GROW E-variable was de-
rived analytically. I showed that when using this E-variable in an online, real-time
fashion, the expected sample size needed to achieve a desired power can be lower
than when using its classical equivalent, Fisher’s exact test. No analytic expres-
sion could be found for the Kullback-Leibler version: this GROW E-variable has
to be found through numerical optimisation. Nevertheless, the Kullback-Leibler
version could still be preferred in some cases: it was shown to gain higher power
for certain data-generating distributions compared to the absolute difference E-
variable.

Both E-variables were implemented in the Safestats R package, a collabora-
tive project with other machine learning researchers from Amsterdam [2]. The
work in this thesis gave rise to some interesting follow-up questions, such as the
development of ‘most powerful’ GROW E-variables, safe confidence sequences
for proportions, and applications of E-variables for healthcare research, and is
continued in my current PhD project.
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Abstract. In this thesis 1, we conduct two classification tasks on the
crowd-sourced database Happy DB, which consists of more than 100,000
descriptions of happy moments collected using Amazon’s Mechanical
Turk. We apply the state-of-art word embedding algorithm BERT to
transform all happy moments to context-sensitive representations and
then feed them to a one-layer LSTM to learn two critical concepts of
happiness, agency and sociality. We found that the proposed setup im-
proves performance compared to the previous works.

1 Introduction

Natural language processing has been used to decipher human language. Tasks
in this turf such as machine translation, speech recognition, and product recom-
mendation, have vastly improved over the last few years. At the core of these
language processing technologies are language models that transform massive
amounts of textual information into multi-dimensional vector representations of
words or sequences, which are then used as input representations in complex
artificial intelligence tasks. This thesis focuses on learning two concepts of hap-
piness, sociality and agency via two classification tasks. ‘Sociality’ here refers to
feeling happy in the presence of others vs alone, while ‘agency’ denotes whether
the happy moment refers to the participant who reported it or to other people.

Previous work explored diverse methods involving supervised and semi-supervised
learning. The former includes a Word Pair Convolutional Model based on the
hypothesis that a small set of word pairs were vital for representing the nature
of sociality/agency of these happy moments [11], and similar models based on
CNNs [12, 2, 15] and RNN/LSTM/Bi-LSTM[10, 13]. The latter comprises learn-
ing settings incorporating autoencoders [1] or k-means clustering [14]. Various
embedding algorithms were also employed in this task including word2vec [6],
GloVe [7], ELMo [8] and word embeddings pre-trained on WikiText-103 cor-
pus[14]. Among all these models, the Elmo-based LSTM proposed by UBC [10]
holds the state-of-the-art for prediction on agency(85%) and sociality(92%).

1 Full thesis: http://spigler.net/giacomo/files/yixia_wang_thesis_2020.pdf
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2 Methods

Our proposed method combines LSTMs with a state-of-art word embedding al-
gorithm, BERT. The LSTM used had 60 hidden units and a Tanh activation
function, while the output layer. Training was performed using mini-batch gra-
dient descent (size=32) and the Adam optimizer [5] (learning rate η = 0.1).
Early stopping [9] is used in addition to dropout (dropout rate=0.2) to reduce
overfitting.
Out of 24 released BERT models, we use the BERT-Base model(Uncased: 12-
layer Transformer, 768 dimensions, 12-heads, 110M parameters)[3]. Max se-
quence length is set at 128. Padding and truncation are used to fix the length of
each account of happy moments to 128 tokens. Therefore, for each input text,
BERT outputs a tensor of shape (128, 768) with one vector per token. Out of
12 layers, we summed the last four layers as a pooling strategy to obtain a fixed
representation for each happy moment description.

We also developed eight baseline models by applying traditional machine learn-
ing algorithms, including Support Vector Machine (SVM), Random Forest, Lo-
gistic Regression (Log Reg) and Naive Bayes. Each of them is implemented with
two sets of word embedding algorithms: Bag of Words (BOW) and Bag of Words
with a TF-IDF transformation (BOW tf-idf). As most of the previous works [4]
reported their highest accuracy from an architecture equipped with the GloVe
word embedding, a further baseline based on LSTM + GloVe is also used.

3 Results

The results of the baseline models show that a linear SVM model with BOW
as word representation performs the best overall (sociality accuracy=90.49%,
agency accuracy=78.34%), although the classification of agency was found to be
marginally higher using Logistic Regression + BOW (accuracy=80.65%). The
results of the main evaluation are shown in Table 1. The proposed solution was
found to improve all metrices (accuracy, F1 score, and AUC) compared to both
GloVe+LSTM and ELMo+LSTM [4].

Sociality Agency
Models Accuracy F1 Score AUC Accuracy F1 Score AUC

ELMo + LSTM(publication) 92.00% 93.00% None 85.00% 90.00% None

GloVe + LSTM 90.14% 90.89% 95.70% 83.70% 88.55% 89.41%

BERT + LSTM 93.00% 93.49% 97.11% 86.42% 90.42% 91.41%

Table 1. Accuracy of the proposed LSTM+BERT model on Agency and Sociality
classification.
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Contemporary computer vision frequently draws on convolutional neural net-
works (CNN). State-of-the-art performance is often achieved by further deepen-
ing previous architectures, but this increases computational costs and compli-
cates the mapping of artificial layers to cortical areas in computational neuro-
science, where these networks are used as models for goal-driven research. An
alternative direction of multidisciplinary relevance is thus the search for struc-
tural and algorithmic improvements within or between layers to alleviate the
necessity of additional depth. Inspiration for this can be found in visual cortex.
Naturally, this also improves the network’s biological plausibility, rendering it
more useful for neuroscience.

In primary visual cortex, neurons project to subsequent visual areas but also
connect laterally, i.e. to neurons in the same area [3]. Here, we distinguish three
types of lateral interaction: Semantic lateral connections link neurons responding
to the same patch of the visual field but preferring different line orientations. This
type of connectivity typically follows a Mexican hat profile assumed to fine-tune
the neurons’ orientation selectivity [2]. Spatial lateral connectivity establishes
interactions between neurons of similar orientation selectivity responding to dif-
ferent patches of the visual field along the axis of their orientation, presumably
integrating and segmenting contours [3]. Complex cells receive input from phase
selective simple cells and merge them into phase invariant representations [1].
In CNNs neither semantic nor spatial lateral connections are explicitly modeled
and complex cells are only loosely captured by pooling.

We introduce a joint model of spatiosemantic lateral connectivity and an ex-
plicit model of complex cells to extend CNNs. Spatial and semantic lateral con-
nections enrich the first convolutional layer by transforming its activation map
with biologically inspired wavelets along both the spatial domain and the channel
domains. We avoid the necessity of explicitly incorporating temporal dynamics
resulting from recurrent interactions by assuming these dynamics to be linear.
This allows us to solve for their steady state which renders the lateral connectiv-
ity a single non-parametric feedforward operation. Phase invariant complex cells
are simulated by two independent cell populations sa and sb contributing their
activations to the layer’s representation individually, but additionally merging
into a third population of complex cells via a pairwise complex modulus non-
linearity c =

√
(sa + sb)2. Unlike fixed complex wavelets in [4], the kernels of

simple cells are learned autonomously. A full architecture of the adapted first
convolutional layer is given in Figure 1.
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Fig. 1. Convolutional layer architecture with added complex cell simulation and lateral
connections. sa and sb are two independent populations of neurons, realized as two
arrays of convolutional filters. Their input is the original image, whereas the final
output of the layer (z) constitutes the input to the second convolutional layer.

A qualitative analysis of the effects of our model of spatial lateral connec-
tivity reveals that it successfully integrates segmented contours along straight
lines. Experiments on object and texture classification showcase significant and
substantial performance improvements in small-scale CNNs using complex cell
simulations. Applied to texture classification, the combination of complex cells
and spatial lateral connections produces the best performance, but spatial lat-
eral connectivity on its own can already significantly improve a shallow network
on both tasks. A closer look at the convolutional kernels emerging in laterally
connected complex cells reveals their autonomously learned structure to be rem-
iniscent of primary visual cortex. In particular, learned kernels largely adopt the
orientation of their allocated spatial connectivity profiles and thus reinforce the
proclaimed utility [3] of facilitation along this axis. In conclusion, our results
demonstrate that introducing biologically inspired connectivity patterns into
CNNs benefits their performance despite not increasing the number of trainable
parameters. Improvements can be attributed to the integration and segmentation
of contours during early visual processing, as the artificial connectivity profiles
emulate those fulfilling these functions in the brain. In consequence, the intro-
duced layer augmentation may not only improve small-scale CNNs in computer
vision applications but also foster neuroscientific research relying on biologically
plausible, goal-driven models.
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