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Abstract. When applying supervised machine learning algorithms to
classification, the classical goal is to reconstruct the true labels as accu-
rately as possible. However, if the predictions of an accurate algorithm
are aggregated, for example by counting the predictions of a single class
label, the result is often still statistically biased. Implementing machine
learning algorithms in the context of official statistics is therefore im-
peded. The statistical bias that occurs when aggregating the predictions
of a machine learning algorithm is referred to as misclassification bias. In
this paper, we focus on reducing the misclassification bias of binary clas-
sification algorithms by employing five existing estimation techniques,
or estimators. As reducing bias might increase variance, the estimators
are evaluated by their mean squared error (MSE). For three of the es-
timators, we are the first to derive an expression for the MSE in finite
samples, complementing the existing asymptotic results in the literature.
The expressions are then used to compute decision boundaries numeri-
cally, indicating under which conditions each of the estimators is optimal,
i.e., has the lowest MSE. Our main conclusion is that the calibration es-
timator performs best in most applications. Moreover, the calibration
estimator is unbiased and it significantly reduces the MSE compared to
that of the uncorrected aggregated predictions, supporting the use of
machine learning in the context of official statistics.‡
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1 Introduction

Currently, many researchers in the field of official statistics are examining the
potential of machine learning algorithms. A typical example is estimating the
proportion of houses in the Netherlands having solar panels, by employing a
machine learning algorithm trained to classify satellite images [3]. However, as
long as the algorithm’s predictions are not error-free, the estimate of the relative
occurrence of a class, also known as the base rate, can be biased [17,18]. This
fact is also intuitively clear: if the number of false positives does not equal the
number of false negatives, then the estimate of the base rate is biased, even if
the false positive rate and false negative rate are both small. The statistical bias
that occurs when aggregating the predictions of a machine learning algorithm is
referred to as misclassification bias [5].

Misclassification bias occurs in a broad range of applications, including official
statistics [13], land cover mapping [12], political science [9,21], and epidemiology
[8]. The objective in each of these applications is to minimize a loss function at
the level of aggregated predictions, in contrast to minimizing a loss function at
the level of individual predictions. Within the field of machine learning, learning
with that objective is referred to as quantification learning; see [6] for a recent
overview. In quantification learning, the idea is not to train a classifier at all,
but to directly estimate the base rate from the feature distribution. A drawback
of that approach is that relatively large training and test datasets are needed to
optimize hyperparameters and to obtain accurate estimates of the accuracy of
the prediction, respectively. In the applications referred to before, labelled data
are often expensive to obtain and therefore scarce. Hence, in this paper, we focus
on what is referred to as quantifiers based on corrected classifiers [6]. In short, it
entails that we first aggregate predictions of classification algorithms and then
correct the aggregates in order to reduce misclassification bias.

In the literature on measurement error, several methods have been proposed
to reduce misclassification bias when aggregating categorical data that is prone
to measurement error; see [11] for a technical discussion and [1] for a more
recent overview. Based on that literature, we propose a total of five estimators
for the base rate that can be derived from the confusion matrix of a classification
algorithm. As reducing bias might increase variance, the estimators are evaluated
by their mean squared error (MSE). To the best of our knowledge, for three of
the five estimators, only asymptotic expressions for the MSE are ever presented
in the literature. In this paper, we derive the expressions for the MSE for finite
datasets. As a first step, we restrict ourselves to binary classification problems.
Nonetheless, we believe that the same proof strategies may be used for multi-
class classification problems. The expressions for the MSE enable a theoretical
comparison of the five estimators for finite datasets. It allows us, for the first
time, to make solid recommendations on how to employ classification algorithms
in official statistics and other disciplines interested in aggregate statistics.

The remainder of the paper is organized as follows. First, in Section 2, the
five estimators are formally introduced and the mathematical expressions for
their MSEs are presented. The derivations are included in the appendix. Then, in
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Section 3, the decision boundaries are numerically derived. We can indicate under
which condition, like the sensitivity and specificity of the learning algorithm and
the size of the test set, each of the estimators has the lowest MSE. Finally, in
Section 4, we draw our main conclusion and discuss directions for future research.

2 Methods

Consider a target population of N objects and assume that the objects can be
separated into two classes. One of the two classes is the class of interest. We
refer to the relative occurrence of the class of interest in the target population
as the base rate and we denote that parameter by α. In the example mentioned
in Section 1, the objects are houses in the Netherlands and the two classes are
whether or not the house has solar panels on the roof [3]. The class of interest
is having solar panels and hence α indicates the relative frequency of houses in
the country having solar panels.

We assume that the true classifications are only known for objects in a small
simple random sample of the target population. In the applications that we
consider, these classifications are obtained by manual inspection of the objects
in that sample. Objects that belong to the class of interest receive class label 1,
the other objects receive class label 0. Then, the sample is split randomly into a
training set and a test set. As usual, the training set is used for model selection
through cross-validation and is then used to train the selected model. We will
consider the result of that part of the process as given. The test set is used to
estimate the classification performance of the trained algorithm, which we will
discuss in more detail below. Finally, the classification algorithm is applied on
the entire target population (minus the small random sample, but we will neglect
that small difference) resulting in a predicted label for each object.

As we will encounter in Subsection 2.2, simply computing the relative occur-
rence of objects predicted to belong to the class of interest will result in a biased
estimate of α. That bias is referred to as misclassification bias [4]. In this section,
five estimators for the base rate parameter α are formally introduced, many of
which have been proposed decades ago; see [11] for an extensive discussion. We
summarize the formulas for bias and variance that can be found in the literature
and complement them with our own derivations.

In order to correct for misclassification bias, we need estimates of the al-
gorithm’s (mis)classification probabilities. Following [20], we assume that mis-
classifications are independent across objects and that the (mis)classification
probabilities are the same for each object, conditional on their true class label.
With this classification-error model in mind, we denote the probability that the
algorithm predicts an object of class 0 correctly by p00 and we define p11 anal-
ogously. Observe that p11 and p00 correspond to the algorithm’s sensitivity and
specificity, respectively. The confusion matrix P is then defined as follows:

P =

(
p00 1− p00

1− p11 p11

)
. (1)
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Table 1: Contingency tables for test set (left) and target population (right)
(a)

Estimated class
0 1 Tot

True class
0 n00 n01 n0+

1 n10 n11 n1+

Tot n+0 n+1 n

(b)

Estimated class
0 1 Tot

True class
0 N00 N01 N0+

1 N10 N11 N1+

Tot N+0 N+1 N

The classification probabilities p00 and p11 are not known, but will be esti-
mated using the test set. We write n for the size of the test set and introduce
the notation nij and Nij as depicted in Table 1. The classification probabilities
are then estimated without bias by p̂00 = n00/n0+ and p̂11 = n11/n1+. (Here,
the assumption is needed that the test set is a simple random sample from the
target population.) Furthermore, the base rate α for the target population is
defined formally as α = N1+/N .

Finally, we make the following technical assumptions. We assume that the
algorithm is not perfect in predicting either of the classes, but that it is bet-
ter than guessing for both of the classes, i.e., we assume that 0.5 < pii < 1.
Because the test set is a small (i.e., n � N) simple random sample from the
population, n0+ may be assumed to follow a Bin(n, α)-distribution, since α is
considered fixed. Moreover, the classification-error model that we assume implies
that the elements in the rows in Table 1, conditional on the corresponding row
total, follow a binomial distribution as well, with the corresponding classification
probability as success probability. For example, to name just two out of the eight
entries, n00 | n0+ ∼ Bin(n0+, p00) and N10 | N1+ ∼ Bin(N1+, 1−p11). Last, the
assumption n� N justifies our ultimate technical assumption, which is that the
estimators for the entries in P based on the test set on the one hand and esti-
mators for α based only on the predicted class labels for the target population
on the other hand, are independent random variables.

2.1 Baseline estimator - random sample

The baseline estimator for α is the proportion of data points in the test dataset
for which the observed class label is equal to 1. The baseline estimator will be
denoted by α̂a. Under the assumptions discussed above, it is immediate that α̂a
is an unbiased estimator for α, i.e.:

B [α̂a] = 0. (2)

Since we have assumed that the size n of the test dataset is much smaller than
the size N of the population data, we may approximate the distribution of nα̂a
by a binomial distribution with success probability α. The variance, and hence
the MSE, of α̂a is then given by

MSE [α̂a] = V [α̂a] =
α(1− α)

n
. (3)
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This MSE will serve as the baseline value for the other estimators we discuss.

2.2 Classify and count

When applying a trained machine learning algorithm on new data, we may
simply count the number of data points for which the predicted class equals
1. The resulting estimator for α, which we will denote by α̂∗, is referred to
as the ‘classify-and-count’ estimator, see [6]. In general, the classify-and-count
estimator is (strongly) biased, and has almost zero variance. More specifically,

E [α̂∗] = αp11 + (1− α)(1− p00), (4)

and hence
B [α̂∗] = α(p11 − 1) + (1− α)(1− p00), (5)

which is zero only if the point (p00, p11) lies on the line through (1 − α, α) and
(1, 1) in R2, as shown in [17]. The variance of the classify-and-count estimator
is derived in [2] and equals

V [α̂∗] =
αp11(1− p11) + (1− α)p00(1− p00)

N
. (6)

If the population size N is large, the variance of α̂∗ is low. In some literature,
this low variance is misinterpreted as high accuracy, by claiming intuitively that
the large size of the dataset implies that the noise cancels out (cf. [16]). However,
the nonzero bias is neglected in such arguments. Therefore, we are interested in
the MSE because it considers both bias and variance. It equals

MSE [α̂∗] =
[
α(p11 − 1) + (1− α)(1− p00)

]2
+O

(
1

N

)
. (7)

Here and below, the notation O(1/x) indicates a remainder term that, for suffi-
ciently large values of x > 0, is always contained inside an interval (−C/x,C/x)
for some constant C > 0; see, e.g., [19, p. 147]. Observe how, in general, the
MSE does not converge to 0 as N tends to ∞.

2.3 Subtracting estimated bias

Knowing that the classify-and-count estimator α̂∗ is biased (see (5)), we may
attempt to estimate that bias and subtract it from α̂∗. As briefly mentioned in
[17], we may estimate that bias by the plug-in estimator, that is, we substitute
the unknown quantities in Equation (5) by their estimates. More precisely, the
bias is estimated as

B̂ [α̂∗] = α̂∗(p̂00 + p̂11 − 2) + (1− p̂00), (8)

in which the estimators p̂00 and p̂11 are based on the test dataset. The resulting
estimator α̂b for α equals

α̂b = α̂∗ − B̂ [α̂∗] = α̂∗(3− p̂00 − p̂11)− (1− p̂00). (9)
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To the best of our knowledge, the bias and variance of the estimator α̂b have
not been published in the scientific literature. Therefore, we have derived both,
up to terms of order 1/n2, yielding the following result.

Theorem 1. The bias of α̂b as estimator for α is given by

B [α̂b] = (1− p00)(2− p00 − p11)− α(p00 + p11 − 2)2. (10)

The variance of α̂b equals

V [α̂b] =
[α(p00 + p11 − 1)− p00]

2
p00(1− p00)

n(1− α)

(
1 +

α

n(1− α)

)
+

[α(p00 + p11 − 1) + (1− p00)]
2
p11(1− p11)

nα

(
1 +

1− α
nα

)
+O

(
max

[
1

n3
,

1

N

])
. (11)

Proof. See the Appendix.

In particular, Theorem 1 implies that B [α̂b] = (2 − p00 − p11)B [α̂∗], compare
Equations (10) and (5). Hence, |B [α̂b] | ≤ |B [α̂∗] |, because 1 < p00 + p11 < 2.

2.4 Misclassification probabilities

Let P be the row-normalized confusion matrix of the machine learning algorithm
that we have trained, as defined in (1). That is, entry pij is the probability that
the algorithm predicts class j for a data point that belongs to class i. The
probabilities pij are referred to as misclassification probabilities. In the binary
setting, we write α for the column vector (1− α, α)T (similarly for α̂∗). Under
the assumption that the probabilities pij are identical for each data point, we

obtain the expression E[α̂∗] = PTα. If the true values of all entries pij of P

were known and if p00 + p11 6= 1, then α̂p = (PT )−1α̂∗ would be an unbiased

estimator for α. Using the plug-in estimator P̂ for P, estimated on the test set,
the following estimator for α is obtained:

α̂p =
α̂∗ + p̂00 − 1

p̂00 + p̂11 − 1
. (12)

It is known that the estimator α̂p is consistent (asymptotically unbiased) for
α, see [1]. In [7], the variance of this estimator is analysed for an arbitrary
number of classes. For the binary case, a simple analytic expression for the bias
and variance of α̂p for finite datasets has not been given, as far as we know.
Therefore, we have derived the bias and variance for finite datasets, yielding the
following result.
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Theorem 2. The bias of α̂p as estimator for α is given by

B [α̂p] =
p00 − p11

n(p00 + p11 − 1)
+O

(
1

n2

)
. (13)

The variance of α̂p is given by

V [α̂p] =
(1− α)p00(1− p00)

[
1 + α

n(1−α)

]
+ αp11(1− p11)

[
1 + 1−α

nα

]
n(p00 + p11 − 1)2

+O

(
max

[
1

n2
,

1

N

])
. (14)

Proof. See the Appendix.

2.5 Calibration probabilities

Let C be the column-normalized confusion matrix of the machine learning al-
gorithm that we have trained. That is, entry cij is the probability that the true
class of a data point is j given that the algorithm has predicted class i. The prob-
abilities cij are referred to as calibration probabilities [11]. The first element of
the vector Cα̂∗ is an unbiased estimator for α, if C is known.

Using the plug-in estimator Ĉ for C, which is estimated on the test dataset
analogously to P̂, the following estimator α̂c for α is obtained:

α̂c = α̂∗
n11
n+1

+ (1− α̂∗) n10
n+0

, (15)

in which each nij and n+j should be considered as random variables. It has been
shown that α̂c is a consistent estimator for α [1]. Under the assumptions we have
made in this paper, it can be shown that α̂c is in fact an unbiased estimator for
α. To the best of our knowledge, we are also the first to give an approximation
(up to terms of order 1/n2) of the variance of α̂c. Both results are summarized
in the following theorem.

Theorem 3. The calibration estimator α̂c is an unbiased estimator for α:

B [α̂c] = 0. (16)

The variance of α̂c is equal to the following expression:

V (α̂c) =

[
(1− α)(1− p00) + αp11

n
+

(1− α)p00 + α(1− p11)

n2

]
×
[

αp11
(1− α)(1− p00) + αp11

(
1− αp11

(1− α)(1− p00) + αp11

)]
+

[
(1− α)p00 + α(1− p11)

n
+

(1− α)(1− p00) + αp11
n2

]
×
[

(1− α)p00
(1− α)p00 + α(1− p11)

(
1− (1− α)p00

(1− α)p00 + α(1− p11)

)]
+O

(
max

[
1

n3
,

1

Nn

])
. (17)



8 K. Kloos et al.

Proof. See the Appendix.

Hereby, the overview of the five estimators for α is complete. The expressions
that we have derived for the bias and variance of these five estimators will now
be used to compare the (root) mean squared error of the five estimators, both
theoretically as well as by means of simulation studies.

3 Results

The aim of this section is to derive empirically which of the five estimators of α
that we presented in Section 2 has the lowest MSE, and under which conditions.
For a given population size N , the MSE of each estimator depends on four
parameters (i.e, α, p00, p11, n), so visualizations would have to be 5-dimensional.
To reduce dimensions, we will first present a simulation study in which all four
parameters are fixed. For the fixed parameter setting, the sampling distributions
of the estimators are compared using boxplots. Second, we will fix several values
of α and n and use plots to compare the MSE of the estimators for varying p00
and p11. The latter analysis will already be sufficient in order to reach a final
conclusion on which estimator has the lowest MSE.‖

3.1 Sampling distributions of the estimators

Here, we present two simple simulation studies to gain some intuition for the
difference in the sampling distributions of the five estimators. In the first simu-
lation study, we consider a class-balanced dataset, that is, α = 0.5, with a small
test dataset of size n = 1000, a large population dataset N = 3 × 105 and a
rather poor classifier having classification probabilities p00 = 0.6 and p11 = 0.7.
We deliberately choose p00 6= p11, as otherwise the classify-and-count estimator
α̂∗ would be unbiased: (p00, p11) would be on the line between (1 − α, α) and
(1, 1), see also Equation (5).

Table 2 summarizes the bias, variance and root mean squared error (RMSE),
computed using the analytic approximations presented in Section 2. The classify-
and-count estimator is highly biased and therefore it has a high RMSE, despite
having the lowest variance of all estimators. The RMSE of the classify-and-count
estimator can indeed be improved by subtracting an estimate of the bias (α̂b).
The subtraction reduces the absolute bias and only slightly increases the vari-
ance. A further bias reduction is obtained by the misclassification estimator α̂p.
However, inverting the row-normalized confusion matrix P (that is, the misclas-
sification probabilities) for values of p00 and p11 close to p00+p11 = 1 significantly
increases the variance of the estimator, leading to the highest RMSE of all es-
timators considered. Finally, the calibration estimator α̂c is unbiased and has

‖The results in this section have been obtained using the statistical software R. All
visualizations have been implemented in a Shiny dashboard, which in addition includes
interactive 3D-plots of the RMSE surface for each of the estimators. The code can be
retrieved from https://github.com/kevinkloos/Misclassification-Bias.

https://github.com/kevinkloos/Misclassification-Bias
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the lowest variance among the estimators that make use of the test dataset. In
particular, note that the variance is also lower than that of the baseline estima-
tor. In this example, the estimator based on the calibration probabilities has the
lowest RMSE, and it is the only estimator with a lower RMSE than the baseline
estimator α̂a.

Table 2: A comparison of the bias, variance and RMSE of each of the five esti-
mators for α, where α = 0.5, p00 = 0.6, p11 = 0.7, n = 1000 and N = 3× 105.

Bias Variance RMSE
Estimator Symbol ×10−2 ×10−4 ×10−2

Baseline α̂a 0.000 2.500 1.581

Classify-and-count α̂∗ 5.000 0.000 5.000
Subtracted-bias α̂b -3.500 2.244 3.807

Misclassification α̂p -0.033 25.025 5.003
Calibration α̂c 0.000 2.275 1.508

To gain insight in the sampling distribution of the estimators, in addition
to the metrics presented in Table 2, we simulated a large number R = 10000 of
confusion matrices for datasets of size n = 1000 and N = 3×105. Each confusion
matrix was created as follows. First, take a random draw from a Bin(N,α)-
distribution, resulting in a number N1+. Then, take a random draw from a
Bin(N1+, p11)-distribution to obtain N11 and a random draw from a Bin(N −
N+1, p00)-distribution to obtain N00. This computes the theoretical confusion
matrix for the target population. Use this confusion matrix to draw a sample
from a multivariate hypergeometric distribution, with its parameters from the
drawn theoretical confusion matrix. These draws precisely give the number of
true and false positives and negatives needed to fill a confusion matrix. Each
confusion matrix can be used to compute the five estimators. Repeating this
procedure R = 10000 times gave rise to the sampling distributions of the five
estimators as presented in Figure 1. It nicely visualizes the bias and variance
of the five estimators, supporting the results in Table 2. In addition, it shows
that, due to the bias, the variances of the classify-and-count estimator α̂∗ and
the subtracted-bias estimator α̂b cannot be used to obtain reliable confidence
intervals for α.

In the second simulation study, we consider a highly imbalanced dataset,
namely α = 0.98. We again assume that the available test dataset has size
n = 1000, but we assume a classifier having classification probabilities p00 = 0.94
and p11 = 0.97. Table 3 summarizes the bias, variance and RMSE of each of the
estimators and Figure 2 shows the sampling distributions of each of the estima-
tors. It can be noticed that subtracted-bias estimator and the misclassification
estimator both have estimates of α that exceed 1. It is obvious that such values



10 K. Kloos et al.

Fig. 1: The boxplots show the sampling distribution of the estimators for α,
where α = 0.5, p00 = 0.6, p11 = 0.7, n = 1000 and N = 3× 105. The true value
of α is highlighted by a vertical line.

cannot occur in the population. For the method with the misclassification prob-
abilities, this effect gets stronger when p00 + p11 gets closer to 1. Furthermore,
the baseline estimator performs well compared to the other estimators when the
dataset is highly imbalanced: its RMSE is slightly higher than the RMSE of the
method with calibration probabilities and much lower than the method with the
misclassification probabilities. Finally, it is shown that the classify-and-count
estimator is highly biased, even though p00 and p11 are both fairly close to 1.

Table 3: A comparison of the bias, variance and RMSE of each of the five esti-
mators for α, where α = 0.98, p00 = 0.94, p11 = 0.97, n = 1000 and N = 3×105.

Bias Variance RMSE
Method Symbol ×10−2 ×10−5 ×10−3

Baseline α̂a 0.000 1.960 4.427

Classify-and-count α̂∗ -2.820 0.000 28.200
Subtracted-bias α̂b 0.254 3.377 6.342

Misclassification α̂p -0.003 3.587 5.989
Calibration α̂c 0.000 1.289 3.591
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Fig. 2: The boxplots show the sampling distribution of the estimators for α,
where α = 0.98, p00 = 0.94, p11 = 0.97, n = 1000 and N = 3 × 105. The true
value of α is highlighted by a vertical line.

3.2 Finding the optimal estimator

The aim of this subsection is to find the optimal estimator, i.e., the estimator
with the lowest RMSE, for every combination of values of the parameters α,
p00, p11 and n. First, suppose that (p00, p11) is close to the line in the plane
through the points (1 − α, α) and (1, 1). As noted before, it implies that the
classify-and-count estimator α̂∗ has low bias. Consequently, the subtracted-bias
estimator α̂b has low bias as well. Thus, these two estimators will have the lowest
RMSE in the described region, whose size decreases as n increases. Figure 3
visualizes the described region for α = 0.2 and two different values of n. We
remark that the biased estimators α̂∗ and α̂b perform worse (relative to the
other estimators) when the sample size n of the test dataset increases. The
biased methods, like Classify-and-count and Subtracted-bias, perform well when
the classification probabilities are high for the largest group.

As we have seen in both Table 2 and Table 3, the calibration estimator α̂c
competes with the baseline estimator in having the lowest RMSE. In general,
the calibration estimator will have lower RMSE if the classification probabilities
p00 and p11 are higher, while the baseline estimator does not depend on these
classification probabilities. In a neighbourhood of p00 = p11 = 0.5, the baseline
estimator will always have lower RMSE than the calibration estimator. However,
for every α and n, there must exist a curve in the (p00, p11)-plane beyond which
the calibration estimator will have lower RMSE than the baseline estimator. The
left-hand panels in Figure 4 show this curve for α = 0.2 and two different values
of n. For larger values of n, the curve where the calibration estimator performs
better than the baseline estimator gets closer to p00 = p11 = 0.5 and therefore
covers a larger area in the (p00, p11)-plane.
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Fig. 3: For each coordinate (p00, p11), the depicted color indicates which estimator
has the lowest RMSE, considering only the classify-and-count estimator (green),
the subtracted-bias estimator (orange) and the calibration estimator (purple). In
the left panel , we have set α = 0.2 and n = 300, whereas α = 0.2 and n = 3000
in the right panel. The red and green regions are smaller in the right panel, as
the variance of the calibration estimator is decreasing in n, while the bias of the
classify-and-count estimator and of the subtracted-bias estimator do not depend
on n.

Table 2 and Table 3 have shown that the misclassification estimator only
performs well if p00 and p11 are high, which is confirmed by the expression of the
bias and variance: both have a singularity at p00 + p11 = 1, see Equations (13)
and (14). The right-hand panels in Figure 4 show, for α = 0.2 and two different
values of n, the curve in the (p00, p11)-plane beyond which the misclassification
estimator has lower RMSE than the baseline estimator. Observe that an increase
in the size n of the test dataset does not have much impact on the position of
the curve. The reason is that the misclassification estimator has a singularity
at p00 = p11 = 0.5. The shape of the curve also depends on the value of α.
If α = 0.8 instead of 0.2, the curves are line-symmetric in the line p00 = p11.
The curve is also line symmetric in p00 = p11 for α = 0.5. The area where the
misclassification estimator performs better than the baseline estimator decreases
when α gets closer towards 0 or 1. The main reason why this happens is that
the variance of the baseline estimator decreases fast when α gets closer towards
0 or 1. Thus, the baseline estimator performs better than the misclassification
estimator either if the classifier performs badly in general or performs badly in
classifying the largest group.

The final analysis of this paper is to compare the calibration estimator and
the misclassification estimator for high values of p00 and p11. In Theorem 4 it is
proven that, for all possible combinations of α and sufficiently large n, the MSE
of the calibration estimator is consistently lower than that of the misclassification
estimator.
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Fig. 4: For each coordinate (p00, p11), the depicted color indicates which esti-
mate has the lowest RMSE, considering only the baseline estimator (green), the
calibration estimator (orange) and the misclassification estimator (purple). The
top-row panels consider α = 0.2 and n = 300, while the bottom-row panels
consider α = 0.2 and n = 3000.

Theorem 4. Let M̃SE[α̂p] and M̃SE[α̂c] denote the approximate mean squared
errors, up to terms of order 1/n, of the misclassification estimator and the cali-
bration estimator, respectively. It holds that:

M̃SE[α̂p]− M̃SE[α̂c] =

[
(1− α)p00(1− p00) + αp11(1− p11)

]2
(p00 + p11 − 1)2β(1− β)

, (18)

in which β := (1− α)(1− p00) + αp11.

Proof. See the Appendix.

Thus, neglecting terms of order 1/n2 and higher, the result implies that the
calibration estimator has a lower mean squared error than the misclassification
estimator, except that both are equal if and only if p00 = p11 = 1. (Note that
0 < β < 1.)

We do remark that the difference in MSE is large in particular for values of
p00 and p11 close to 1

2 . More specifically, it diverges when p00 + p11 → 1. It is
the result of the misclassification estimator having a singularity at p00 + p11 = 1
(see Equation (14)), while the variance of the calibration estimator is bounded.
An unpleasant consequence of the singularity at p00 + p11 = 1 is that, for fixed
n and α, the probability that α̂p takes values outside the interval [0, 1] increases
as p00 + p11 → 1; see [14] for a discussion and a possible solution.

4 Conclusion and Discussion

In this paper, we have studied the effect of classification errors on five estimators
of the base rate parameter α that are obtained from machine learning algorithms.
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In general, a straightforward classify-and-count estimator will lead to biased
estimates and some form of bias correction should be considered. As reducing
bias might increase variance, we evaluated the (root) mean squared error (MSE)
of the five estimators, both theoretically as well as numerically.

From our results we may draw the following main (three-part) conclusion
regarding which estimator for α has lowest mean squared error. First, when
dealing with small test datasets and rather poor algorithms, that is p00 and p11
both close to 0.5, the baseline estimator α̂a has the lowest MSE. Second, when
dealing with algorithms for which the classification probabilities p00 and p11 are
in a small neighbourhood around the line (p11 − 1)α + (1 − p00)(1 − α) = 0
in the (p00, p11)-plane, the classify-and-count estimator and the subtracted-bias
estimator will have the lowest MSE. As the size of the test dataset increases,
the size of that neighbourhood decreases. Third, in any other situation, the
calibration estimator will have the lowest MSE. In practice, the test dataset will
have to be used to determine which of the three scenarios applies to the data
and the algorithm at hand. It is an additional estimation problem that we have
not discussed in this paper.

We would like to close the paper by pointing out three interesting directions
for future research. First, the results could be generalized to multi-class classifi-
cation problems. The theoretical derivations of the bias and variance are more
complicated and involve matrix-vector notation, but the proof strategy is simi-
lar. However, it is more challenging to compare the MSE of the five estimators
visually in the multi-class case.

Second, the assumptions that we have made could be relaxed. In particular,
a trained and implemented machine learning model is, in practice, often used
over a longer period of time. A shift in the base rate parameter α, also known as
prior probability shift [15], is then inevitable. Consequently, we may no longer
assume that the conditional distribution of the class label given the features in
the test dataset is similar to that in the population. It implies that the calibration
estimator is no longer unbiased, which might have a significant effect on our main
conclusion.

Third and finally, a combination of estimators might have a substantially
lower MSE than that of the individual estimators separately. Therefore, it might
be interesting to study different methods of model averaging applied to the prob-
lem of misclassification bias. It could be fruitful especially when the assumptions
that we have made are relaxed.
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Appendix

This appendix contains the proofs of the theorems presented in the paper entitled
“Comparing Correction Methods for Misclassification Bias”. Recall that we have
assumed a population of size N in which a fraction α := N1+/N belongs to the
class of interest, referred to as the class labelled as 1. We assume that a binary
classification algorithm has been trained that correctly classifies a data point
that belongs to class i ∈ {0, 1} with probability pii > 0.5, independently across
all data points. In addition, we assume that a test set of size n� N is available
and that it can be considered a simple random sample from the population.
The classification probabilities p00 and p11 are estimated on that test set as
described in Section 2. Finally, we assume that the classify-and-count estimator
α̂∗ is distributed independently of p̂00 and p̂11, which is reasonable (at least as
an approximation) when n� N .

It may be noted that the estimated probabilities p̂11 and p̂00 defined in Sec-
tion 2 cannot be computed if n1+ = 0 or n0+ = 0. Similarly, the calibration
probabilities c11 and c00 cannot be estimated if n+1 = 0 or n+0 = 0. We assume
here that these events occur with negligible probability. This will be true when
n is sufficiently large so that nα� 1 and n(1− α)� 1.

Preliminaries

Many of the proofs presented in this appendix rely on the following two math-
ematical results. First, we will use univariate and bivariate Taylor series to ap-
proximate the expectation of non-linear functions of random variables. That is,
to estimate E[f(X)] and E[g(X,Y )] for sufficiently differentiable functions f
and g, we will insert the Taylor series for f and g at x0 = E[X] and y0 = E[Y ]
up to terms of order 2 and utilize the linearity of the expectation. Second, we
will use the following conditional variance decomposition for the variance of a
random variable X:

V (X) = E[V (X | Y )] + V (E[X | Y ]). (19)

The conditional variance decomposition follows from the tower property of con-
ditional expectations [10]. Before we prove the theorems presented in the paper,
we begin by proving the following lemma.

Lemma 1. The variance of the estimator p̂11 for p11 estimated on the test set
is given by

V (p̂11) =
p11(1− p11)

nα

[
1 +

1− α
nα

]
+O

(
1

n3

)
. (20)

Similarly, the variance of p̂00 is given by

V (p̂00) =
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
. (21)

Moreover, p̂11 and p̂00 are uncorrelated: C(p̂11, p̂00) = 0.
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Proof (of Lemma 1). We approximate the variance of p̂00 using the conditional
variance decomposition and a second-order Taylor series, as follows:

V (p̂00) = V

(
n00
n0+

)
= En0+

[
V

(
n00
n0+

| n0+
)]

+ Vn0+

[
E

(
n00
n0+

| n0+
)]

= En0+

[
1

n20+
V (n00 | n0+)

]
+ Vn0+

[
1

n0+
E(n00 | n0+)

]
= En0+

[
n0+p00(1− p00)

n20+

]
+ Vn0+

[
n0+p00
n0+

]
= En0+

[
1

n0+

]
p00(1− p00)

=

[
1

E[n0+]
+

1

2

2

E[n0+]3
× V [n0+]

]
p00(1− p00) +O

(
1

n3

)
=
p00(1− p00)

E[n0+]

[
1 +

V [n0+]

E[n0+]2

]
+O

(
1

n3

)
=
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
.

The variance of p̂11 is approximated in the exact same way.
Finally, to evaluate C(p̂11, p̂00) we use the analogue of (19) for covariances:

C(p̂11, p̂00) = C

(
n11
n1+

,
n00
n0+

)
= En1+,n0+

[
C

(
n11
n1+

,
n00
n0+

| n1+, n0+
)]

+ Cn1+,n0+

[
E

(
n11
n1+

| n1+, n0+
)
, E

(
n00
n0+

| n1+, n0+
)]

= En1+,n0+

[
1

n1+n0+
C(n11, n00 | n1+, n0+)

]
+ Cn1+,n0+

[
1

n1+
E(n11 | n1+),

1

n0+
E(n00 | n0+)

]
.

The second term is zero as before. The first term also vanishes because, condi-
tional on the row totals n1+ and n0+, the counts n11 and n00 follow independent
binomial distributions, so C(n11, n00 | n1+, n0+) = 0.

Note: in the remainder of this appendix, we will not add explicit subscripts
to expectations and variances when their meaning is unambiguous.

Subtracted-bias estimator

We will now prove the bias and variance approximations for the subtracted-bias
estimator α̂b that was defined in Equation (9).
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Proof (of Theorem 1). The bias of α̂b is given by

B(α̂b) = E
[
α̂? − B̂[α̂?]

]
− α

= E[α̂? − α]− E
[
B̂[α̂?]

]
= B[α̂?]− E

[
B̂[α̂?]

]
= [α(p00 + p11 − 2) + (1− p00)]− E [α̂?(p̂00 + p̂11 − 2) + (1− p̂00)] .

Because α̂∗ and (p̂00 + p̂11 − 2) are assumed to be independent, the expectation
of their product equals the product of their expectations:

B(α̂b) = α(p00 + p11 − 2) + (1− p00)− E[α̂?](p00 + p11 − 2)− (1− p00)

= (α− E[α̂?])(p00 + p11 − 2)

= B[α̂?](2− p00 − p11)

= (1− p00)(2− p00 − p11)− α(p00 + p11 − 2)2.

This proves the formula for the bias of α̂b as estimator for α. To approximate
the variance of α̂b, we apply the conditional variance decomposition (19) condi-
tional on α̂∗ and look at the two resulting terms separately. First, consider the
expectation of the conditional variance:

E [V (α̂b | α̂∗)] = E [V (α̂∗(3− p̂00 − p̂11)− (1− p̂00) | α̂∗)]
= E

[
V (α̂∗(3− p̂00 − p̂11) | α̂∗) + V (1− p̂00 | α̂∗)
− 2C(α̂∗(3− p̂00 − p̂11), 1− p̂00 | α̂∗)

]
= E

[
(α̂∗)2V (3− p̂00 − p̂11 | α̂∗) + V (1− p̂00 | α̂∗)
− 2α̂∗C(3− p̂00 − p̂11, 1− p̂00 | α̂∗)

]
= E

[
(α̂∗)2 [V (p̂00) + V (p̂11)] + V (p̂00)− 2α̂∗V (p̂00)

]
= E

[
(α̂∗)2

]
[V (p̂00) + V (p̂11)] + V (p̂00)− 2E [α̂∗]V (p̂00).

In the penultimate line, we used that C(p̂11, p̂00) = 0. The second moment

E
[
(α̂∗)2

]
can be written as E [α̂∗]

2
+ V (α̂∗). Because V (α̂∗) is of order 1/N , it

can be neglected compared to E [α̂∗]
2
, which is of order 1. In particular, we find

that the expectation of the conditional variance equals:

E [V (α̂b | α̂∗)] = E [(α̂∗)]
2

[V (p̂00) + V (p̂11)] + V (p̂00)− 2E [α̂∗]V (p̂00) +O

(
1

N

)
= V (p̂00) [E [α̂∗]− 1]

2
+ V (p̂11)E [α̂∗]

2
+O

(
1

N

)
.

Next, the variance of the conditional expectation can be seen to be equal the
following:

V [E(α̂b | α̂∗)] = V [E(α̂∗(3− p̂00 − p̂11)− (1− p̂00) | α̂∗)]
= V [α̂∗E(3− p̂00 − p̂11 | α̂∗)− E(1− p̂00 | α̂∗)]
= V (α̂∗)(3− p00 − p11)2.
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Because V (α̂∗) is of order 1/N , it can be neglected in the final formula. Fur-
thermore, the variances of p̂00 and p̂11 can be written out using the result from
Lemma 1:

V (α̂b) =
[α(p00 + p11 − 1)− p00]

2
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+

[α(p00 + p11 − 1) + (1− p00)]
2
p11(1− p11)

nα

[
1 +

1− α
nα

]
+O

(
max

[
1

n3
,

1

N

])
.

This concludes the proof of Theorem 1.

Misclassification estimator

We will now prove the bias and variance approximations for the misclassification
estimator α̂p as defined in Equation (12).

Proof (of Theorem 2). Under the assumption that α̂∗ is distributed indepen-
dently of (p̂00, p̂11), it holds that

E(α̂p) = E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
+ E

[
E

(
α̂∗

p̂00 + p̂11 − 1

∣∣∣∣ α̂∗)]
= E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
+ E(α̂∗)E

(
1

p̂00 + p̂11 − 1

)
. (22)

E(α̂∗) is known from (4). To evaluate the other two expectations, we use a
second-order Taylor series approximation. The first- and second-order partial
derivatives of f(x, y) = 1/(x + y − 1) and g(x, y) = (x − 1)/(x + y − 1) =
1− [y/(x+ y − 1)] are given by:

∂f

∂x
=
∂f

∂y
=

−1

(x+ y − 1)2
, (23)

∂2f

∂x2
=
∂2f

∂y2
=

2

(x+ y − 1)3
,

∂g

∂x
=

y

(x+ y − 1)2
, (24)

∂g

∂y
=
−(x− 1)

(x+ y − 1)2
, (25)

∂2g

∂x2
=

−2y

(x+ y − 1)3
,

∂2g

∂y2
=

2(x− 1)

(x+ y − 1)3
.
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Now also using that C(p̂11, p̂00) = 0, we obtain for the first expectation:

E

(
1

p̂00 + p̂11 − 1

)
=

1

p00 + p11 − 1
+
V (p̂00) + V (p̂11)

(p00 + p11 − 1)3
+O(n−2)

=
1

p00 + p11 − 1

1 +

p00(1−p00)
n(1−α) + p11(1−p11)

nα

(p00 + p11 − 1)2

+O(n−2).

(26)

Here, we have included only the first term of the approximations to V (p̂00) and
V (p̂11) from Lemma 1, since this suffices to approximate the bias up to terms of
order O(1/n). Similarly, for the second expectation we obtain:

E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
=

p00 − 1

p00 + p11 − 1
+

(p00 − 1)V (p̂11)− p11V (p̂00)

(p00 + p11 − 1)3
+O(n−2)

=
p00 − 1

p00 + p11 − 1

[
1 + p11

1−p11
nα + p00

n(1−α)

(p00 + p11 − 1)2

]
+O(n−2). (27)

Using (22), (4), (26), and (27), we conclude that:

E(α̂p) =
α(p00 + p11 − 1)− (p00 − 1)

p00 + p11 − 1

1 +

p00(1−p00)
n(1−α) + p11(1−p11)

nα

(p00 + p11 − 1)2


+

p00 − 1

p00 + p11 − 1

[
1 + p11

1−p11
nα + p00

n(1−α)

(p00 + p11 − 1)2

]
+O

(
1

n2

)
.

From this, it follows that an approximation to the bias of α̂p that is correct up
to terms of order O(1/n) is given by:

B(α̂p) =
α(p00 + p11 − 1)− (p00 − 1)

n(p00 + p11 − 1)3

[
p00(1− p00)

1− α
+
p11(1− p11)

α

]
+

(p00 − 1)p11
n(p00 + p11 − 1)3

[
1− p11
α

+
p00

1− α

]
+O

(
1

n2

)
.

By expanding the products in this expression and combining similar terms, the
expression can be simplified to:

B(α̂p) =
p11(1− p11)− p00(1− p00)

n(p00 + p11 − 1)2
+O

(
1

n2

)
.

Finally, using the identity p11(1−p11)−p00(1−p00) = (p00 +p11−1)(p00−p11),
we obtain the required result for B(α̂p).

To approximate the variance of α̂p, we apply the conditional variance decom-
position conditional on α̂∗ and look at the two resulting terms separately. First,
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consider the variance of the conditional expectation:

V [E(α̂p | α̂∗)] = V

[
E

(
α̂∗

1

p̂00 + p̂11 − 1
+

p̂00 − 1

p̂00 + p̂11 − 1
| α̂∗

)]
= V

[
α̂∗

1

p00 + p11 − 1

]
=

1

(p00 + p11 − 1)2
V [α̂∗] = O

(
1

N

)
, (28)

where in the last line we used (6). Note: the factor 1/(p00 +p11−1)2 can become
arbitrarily large in the limit p00 + p11 → 1. It will be seen below that this
same factor also occurs in the lower-order terms of V (α̂p); hence, the relative
contribution of (28) remains negligible even in the limit p00 + p11 → 1.

Next, we compute the expectation of the conditional variance.

E [V (α̂p | α̂∗)] = E

[
V

(
α̂∗

1

p̂00 + p̂11 − 1
+

p̂00 − 1

p̂00 + p̂11 − 1
| α̂?

)]
= E

[
V

(
α̂∗

1

p̂00 + p̂11 − 1
| α?

)
+ V

(
p̂00 − 1

p̂00 + p̂11 − 1
| α̂?

)
+ 2C

(
α̂∗

1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1
| α̂?

)]
= E

[
(α̂∗)2

]
V

[
1

p̂00 + p̂11 − 1

]
+ V

[
p̂00 − 1

p̂00 + p̂11 − 1

]
+ 2E [α̂?]C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
= E [α̂?]

2

[
1 +O

(
1

N

)]
V

[
1

p̂00 + p̂11 − 1

]
+ V

[
p̂00 − 1

p̂00 + p̂11 − 1

]
+ 2E [α̂?]C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
. (29)

To approximate the variance and covariance terms, we use a first-order Taylor
series. Using the partial derivatives in (23), (24) and (25), we obtain:

V

[
1

p̂00 + p̂11 − 1

]
=
V (p̂00) + V (p̂11)

(p00 + p11 − 1)4
+O(n−2)

V

[
p̂00 − 1

p̂00 + p̂11 − 1

]
=

V (p̂00)(p11)2

(p00 + p11 − 1)4
+
V (p̂11)(1− p00)2

(p00 + p11 − 1)4
+O(n−2)

C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
=

V (p̂00)(−p11)

(p00 + p11 − 1)4
+
V (p̂11)(p00 − 1)

(p00 + p11 − 1)4
+O(n−2).
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Substituting these terms into Formula (29) and accounting for Formula (28)
yields:

V (α̂p) =
V (p̂00)

[
E [α̂?]

2 − 2p11E [α̂?] + p211

]
(p00 + p11 − 1)4

+
V (p̂11)

[
E [α̂?]

2 − 2(1− p00)E [α̂?] + (1− p00)2
]

(p00 + p11 − 1)4
+O

(
max

[
1

n2
,

1

N

])
=
V (p̂00) [E [α̂?]− p11]

2

(p00 + p11 − 1)4
+
V (p̂11) [E [α̂?]− (1− p00)]

2

(p00 + p11 − 1)4
+O

(
max

[
1

n2
,

1

N

])
=

V (p̂00)(1− α)2

(p00 + p11 − 1)2
+

V (p̂11)α2

(p00 + p11 − 1)2
+O

(
max

[
1

n2
,

1

N

])
.

Finally, inserting the expressions for V (p̂00) and V (p̂11) from Lemma 1 yields:

V (α̂p) =

p00(1−p00)
n(1−α)

[
1 + α

n(1−α)

]
(1− α)2

(p00 + p11 − 1)2
+

p11(1−p11)
nα

[
1 + 1−α

nα

]
α2

(p00 + p11 − 1)2

+O

(
max

[
1

n2
,

1

N

])
,

from which expression (14) follows. This concludes the proof of Theorem 2.

Calibration estimator

We will now prove the bias and variance approximations for the calibration
estimator α̂c that was defined in Equation (15).

Proof (of Theorem 3). To compute the expected value of α̂c, we first compute
its expectation conditional on the 4-vector N = (N00, N01, N10, N11):

E(α̂c |N) = E

[
α̂∗

n11
n+1

+ (1− α̂∗) n10
n+0

|N
]

= α̂∗E

[
n11
n+1

|N
]

+ (1− α̂∗)E
[
n10
n+0

|N
]

= α̂∗E

[
E

(
n11
n+1

|N , n+1

)
|N

]
+ (1− α̂∗)E

[
E

(
n10
n+0

|N , n+0

)
|N

]
=
N+1

N
E

[
1

n+1
n+1

N11

N+1
|N

]
+
N+0

N
E

[
1

n+0
n+0

N10

N+0
|N

]
=
N11

N
+
N10

N

=
N1+

N
= α. (30)
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By the tower property of conditional expectations, it follows that E[α̂c] =
E [E(α̂c |N)] = α. This proves that α̂c is an unbiased estimator for α.

To compute the variance of α̂c, we use the conditional variance decomposi-
tion, again conditioning on the 4-vector N . We remark that N0+ and N1+ are
deterministic values, but that N+0 and N+1 are random variables. As shown
above in Equation (30), the conditional expectation is deterministic, hence it
has no variance: V (E[α̂c | N ]) = 0. The conditional variance decomposition
then simplifies to the following:

V (α̂c) = E [V (α̂c |N)] . (31)

The conditional variance V (α̂c |N) can be written as follows:

V [α̂c |N ] = V

[
α̂∗

n11
n+1

+ (1− α̂∗) n10
n+0

|N
]

= (α̂∗)2V

[
n11
n+1

|N
]

+ (1− α̂∗)2V
[
n10
n+0

|N
]

+ 2α̂∗(1− α̂∗)C
[
n11
n+1

,
n10
n+0

|N
]
. (32)

We will consider these terms separately. First, the variance of n11/n+1 can be
computed by applying an additional conditional variance decomposition:

V

[
n11
n+1

|N
]

= V

[
E

(
n11
n+1

|N , n+1

)
|N

]
+ E

[
V

(
n11
n+1

|N , n+1

)
|N

]
.

The first term is zero, which can be shown as follows:

V

[
E

(
n11
n+1

|N , n+1

)]
= V

[
1

n+1
E(n11 |N , n+1) |N

]
= V

[
1

n+1
n+1

N11

N+1
|N

]
= V

[
N11

N+1
|N

]
= 0.

For the second term, we find under the assumption that n� N :

E

[
V

(
n11
n+1

|N , n+1

)
|N

]
= E

[
1

n2+1

V (n11 |N , n+1) |N
]

= E

[
1

n2+1

n+1
N11

N+1
(1− N11

N+1
) |N

]
= E

[
1

n+1
|N

]
N11N01

N2
+1

.
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The expectation of 1
n+1

can be approximated with a second-order Taylor series:

V

[
n11
n+1

|N
]

=

[
1

E[n+1 |N ]
+

1

2

2

E[n+1 |N ]3
V [n+1 |N ]

]
N11N01

N2
+1

+O(n−3)

=
1

E[n+1 |N ]

[
1 +

V [n+1 |N ]

E[n+1 |N ]2

]
N11N01

N2
+1

+O(n−3)

=
1

nα̂∗

[
1 +

1− α̂∗

nα̂∗

]
N11N01

N2
+1

+O(n−3). (33)

The variance of n10/n+0 can be approximated in the same way, which yields the
following expression:

V

[
n10
n+0

|N
]

=
1

n(1− α̂∗)

[
1 +

α̂∗

n(1− α̂∗)

]
N00N10

N2
+0

+O(n−3). (34)

Finally, it can be shown that the covariance in the final term is equal to zero:

C

[
n11
n+1

,
n10
n+0

|N
]

= E

[
C

(
n11
n+1

,
n10
n+0

|N , n+0, n+1

)
|N

]
+ C

[
E

(
n11
n+1

|N , n+0, n+1

)
, E

(
n10
n+0

|N , n+0, n+1

)
|N

]
= E

[
1

n+0n+1
C (n11, n10 |N , n+0, n+1) |N

]
+ C

[
1

n+1
E (n11 |N , n+0, n+1) ,

1

n+0
E (n10 |N , n+0, n+1) |N

]
= 0 + C

[
1

n+1
n+1

N11

N+1
,

1

n+0
n+0

N10

N+0
|N

]
= 0. (35)

Combining Formulas (33), (34) and (35) with (32) gives:

V [α̂c |N ] =
N2

+1

N2

1

nα̂∗

[
1 +

1− α̂∗

nα̂∗

]
N11N01

N2
+1

+
N2

+0

N2

1

n(1− α̂∗)

[
1 +

α̂∗

n(1− α̂∗)

]
N00N10

N2
+0

+O(n−3)

=
1

nα̂∗

[
1 +

1− α̂∗

nα̂∗

]
N11N01

N2

+
1

n(1− α̂∗)

[
1 +

α̂∗

n(1− α̂∗)

]
N00N10

N2
+O(n−3).

Recall from Formula (31) that V [α̂c] = E [V [α̂c |N ]] = E [E [V [α̂c |N ] | N+1]].
Hence,

V [α̂c] = E

[
1

nα̂∗

(
1 +

1− α̂∗

nα̂∗

)
E

(
N11N01

N2
| N+1

)
(36)

+
1

n(1− α̂∗)

(
1 +

α̂∗

n(1− α̂∗)

)
E

(
N00N10

N2
| N+1

)]
+O(n−3).
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To evaluate the expectations in this expression, we observe that, conditional
on the column total N+1, N11 is distributed as Bin(N+1, c11), where c11 is a
calibration probability as defined in Section 2.5. Hence,

E [N11 | N+1] = N+1c11 =
N+1αp11

(1− α)(1− p00) + αp11
(37)

V [N11 | N+1] = N+1c11(1− c11).

Similarly, since N = N+1 +N+0 is fixed,

E [N00 | N+1] = N+0c00 =
N+0(1− α)p00

(1− α)p00 + α(1− p11)
(38)

V [N00 | N+1] = N+0c00(1− c00).

Using these results, we obtain:

E

[
N11N01

N2
| N+1

]
=

1

N2
E [N11N01 | N+1]

=
1

N2
E [N11(N+1 −N11) | N+1]

=
1

N2

[
N+1E [N11 | N+1]− E

[
N2

11 | N+1

]]
=

1

N2

[
N+1E [N11 | N+1]− V [N11 | N+1]− E [N11 | N+1]

2
]

=
1

N2

[
N2

+1c11 −N+1c11(1− c11)−N2
+1c

2
11

]
=
N2

+1

N2
c11(1− c11) +O

(
1

N

)
, (39)

and similarly

E

[
N00N10

N2
| N+1

]
=
N2

+0

N2
c00(1− c00) +O

(
1

N

)
. (40)

Substituting expressions (39) and (40) into (36) and noting thatN2
+1/N

2 = (α̂∗)2

and N2
+0/N

2 = (1− α̂∗)2, we obtain:

V [α̂c] = E

[
α̂∗

n

(
1 +

1− α̂∗

nα̂∗

)
c11(1− c11)

+
1− α̂∗

n

(
1 +

α̂∗

n(1− α̂∗)

)
c00(1− c00)

]
+O

(
max

[
1

n3
,

1

Nn

])
=

[
E(α̂∗)

n
+

1− E(α̂∗)

n2

]
c11(1− c11)

+

[
1− E(α̂∗)

n
+
E(α̂∗)

n2

]
c00(1− c00) +O

(
max

[
1

n3
,

1

Nn

])
.

Finally, substituting the expressions for E(α̂∗) from (4) and the expressions for
c11 and c00 from (37) and (38), the desired expression (17) is obtained. This
concludes the proof of Theorem 3.
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Comparing mean squared errors

To conclude, we present the proof of Theorem 4, which essentially shows that the
mean squared error (up to and including terms of order 1/n) of the calibration
estimator is lower than that of the misclassification estimator.

Proof (of Theorem 4). Recall that the bias of α̂p as an estimator for α is given
by

B [α̂p] =
p00 − p11

n(p00 + p11 − 1)
+O

(
1

n2

)
.

Hence, (B [α̂p])
2 = O(1/n2) is not relevant for M̃SE[α̂p]. It follows that M̃SE[α̂p]

is equal to the variance of α̂p up to order 1/n. From (14) we obtain:

M̃SE[α̂p] =
1

n

[
(1− α)p00(1− p00) + αp11(1− p11)

(p00 + p11 − 1)2

]
. (41)

Recall that α̂c is an unbiased estimator for α, i.e., B[α̂c] = 0. Also recall the
notation β = (1−α)(1− p00) +αp11. It follows from (17) that the variance, and
hence the MSE, of α̂c up to terms of order 1/n can be written as:

M̃SE[α̂c] =
1

n

[
β
αp11
β

(
1− αp11

β

)
+ (1− β)

(1− α)p00
1− β

(
1− (1− α)p00

1− β

)]
=
α(1− α)

n

[
(1− p00)p11

β
+
p00(1− p11)

1− β

]
. (42)

To prove Expression (18), first note that

(1− p00)p11
β

+
p00(1− p11)

1− β
=

(1− p00)p11 + β(p00 − p11)

β(1− β)
. (43)

The numerator of this equation can be rewritten as follows:

(1− p00)p11 + β(p00 − p11)

= (1− p00)p11 + (1− α)p00(1− p00) + αp00p11 − (1− α)(1− p00)p11 − αp211
= (1− α)p00(1− p00) + αp00p11 + α(1− p00)p11 − αp211
= (1− α)p00(1− p00) + αp11(1− p11).

Note that the obtained expression is equal to the numerator of Expression (41).
Write T = (1−α)p00(1−p00) +αp11(1−p11) for that expression. It follows that

M̃SE[α̂p]− M̃SE[α̂c]

=
T

n(p00 + p11 − 1)2
− Tα(1− α)

nβ(1− β)

=
T

n(p00 + p11 − 1)2β(1− β)

[
β(1− β)− α(1− α)(p00 + p11 − 1)2

]
.
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Writing out the second factor in the last expression gives the following:

β(1− β)− α(1− α)(p00 + p11 − 1)2

= (1− α)2p00(1− p00) + α(1− α)
(

(1− p00)(1− p11) + p00p11

)
+ α2p11(1− p11)

− α(1− α)(p00 + p11 − 1)2

= (1− α)2p00(1− p00) + α(1− α)
(
p00(1− p00) + p11(1− p11)

)
+ α2p11(1− p11)

= (1− α)p00(1− p00) + αp11(1− p11)

= T.

This concludes the proof of Theorem 4.
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