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Université Libre de Bruxelles, ULB CP212, boulevard du Triomphe, 1050 Bruxelles,
Belgium Arnaud.Pollaris@ulb.ac.be and Gianluca.Bontempi@ulb.ac.be

https://mlg.ulb.ac.be

Abstract. This paper addresses the problem of inferring causation in
a pair of linearly correlated continuous latent variables. We first discuss
the limitations of the Direction Dependance Analysis (DDA) approach
and then introduce the Latent Causation (LC). Five variants (in terms
of dependency statistic) of the LC algorithm are assessed with ROC
curves, then we consider the case of a latent confounder (uniform or chi-
square distributed). While the distribution and the correlations of the
latent confounder influence the accuracy, experimental results show the
robustness of the method using bootstrapped p-values. Implications and
limits of the experimental results are then discussed together with future
directions.

Keywords: SEM · Latent Variables · Causal inference · Observational
data · Latent Confounder · Non normality · Simulations.

1 Introduction

An observed dependency between two variables A and B may have four different
explanations assuming no feedback loop: (1) A is a (direct or indirect) cause
of B, (2) B is a (direct or indirect) cause of A, (3) there is a hidden common
ancestor U of A and B, (4) a common descendant of A and B is kept fixed in
the observed dataset.

This paper lies at the crossroad between Structural Equation Modeling (SEM)
and causal inference literature. Widely used in psychology and in management
research, SEM is a family of techniques which allows the analysis of relationships
between continuous latent variables. Whereas the capacity of SEM to support
causal inference has been discussed during decades (Bollen and Pearl, 2013), we
consider here classical SEM as a set of confirmatory techniques since the causal
graph specified by the user can (and should) be drawn before the data collec-
tion. In that perspective, the fitting of the data on one or more competing causal
models should allow to reject wrong models and then inform the scientist that
at least one of its related causal assumptions is wrong (see Bollen and Pearl,
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2013). However, for equivalent models (i.e., alternative models that fit any data
to the same degree (MacCallum & Austin, 2000 p. 213)) it is not always easy to
retrieve information about causation. So additional tools are needed.

In machine learning, causal discovery is not confirmatory but exploratory: its
goal is to build a causal model based on available data (data collection comes be-
fore the learning of a causal graph). Though in causal discovery most algorithms
make the assumption of causal sufficiency (also in cause-effect pairs (e.g., Guyon,
2014)), some of them address latent variables, e.g., the BPC algorithm (Silva,
Scheine, Glymour, and Spirtes, 2006), the FindOneFactorClusters (FOFC) algo-
rithm (Kummerfeld and Ramsey, 2016) or, more recently, the LSTC algorithm
(Cai, Xie, Glymour, Hao & Zhang, 2019). Shimizu, Hoyer and Hyvärinen (2009)
also show that a linear acyclic model for latent factors is identifiable when the
data are non normal. However, our work in this paper differs from this litera-
ture because we assume the structure of the measurement model already known
(i.e.: each indicator has been specified as measuring exactly one latent variable
of interest in our models) and we do not focus on building large causal graphs
from data.

In particular we focus on causal inference in pairs of latent variables. In a
confirmatory perspective, assuming linearity and non normality, the Direction
Dependent Analysis project (DDA project, 2020) offers an interesting starting
point to infer causation in a pair of latent variables since indications for a latent
confounder can also be detected using its independence component. However,
as stressed in (Wiedermann, Merkle, & von Eye, 2018), there is still a need
for improving the trustworthiness of the DDA approach in presence of mean-
ingful confounding. For this reason, in this paper we focus on improving the
independence component of the DDA approach by focusing in particular on
discriminating between causal and spurious confounding latent configurations.

The paper is structured as follows: First, we present the causal inference
setting we are interested in. Next, the DDA approach is introduced. Then, lim-
itations for using DDA with latent variables are presented. Next, we propose
the Latent Causation (LC) algorithm, grounded on the third DDA component
“Independence properties of predictor and error term” (see Wiedermann & Li,
2018). Then, we present some experiments on simulated data: benchmarking LC
with respect to to state-of-the-art DDA and sensitivity study of LC.

2 Problem setting

Let us consider two continuous correlated latent variables, denoted ξ and η and
some observable children variables called “indicators” (e.g., Kline, 2011) which
are functions of a latent variable plus an additive independent noise. Figure 1 vi-
sualizes a causal and a confounding topology we want to discriminate between.
As an example, values and distributions specified in Figure 1 are possible in-
stances which are used below as assignations for parameters in our simulations.
The number of indicators can also differ from instances in Figure 1. While we
want to confirm the correct causal direction ξ → η (and not ξ ← η) in causal



LC: an algo. for pairs of corr. latent variables in Linear Non-Gaussian SEM 3

models like Model 1, we also want to make sure we will not conclude in favor
of a causal direction for pairs (ξ, η) only correlated due to a latent confounder
(called U below) like in Model 0. Throughout the paper, linearity is assumed,
variables are continuous and all coefficients in theoretical models are presented
for standardized variables.
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Fig. 1. Latent variables are represented by ellipses or circles. Observed variables are
represented by rectangular boxes. Both models are completely standardized. In Model
1, there is a causation between ξ and η but not in Model 0. Note that the distributions
of ξ and η also differ between both models.

3 The DDA approach

The DDA project regroups the techniques which address the inference of causa-
tion by considering 3 aspects: 1. distributional properties of observed variables,
2. distributional properties of error terms of competing models and 3. inde-
pendence properties of predictor and error terms of competing models. In this
paper we will focus on the third aspect. The rationale of our work resides in
this consideration by Wiedermann & Sebastian (2019a, p. 15): “Considering the
behavior of DDA components under confounding, the DDA independence com-
ponent is the most important criterion to confirm that no strong confounders are
present (or, at least, that the influence of confounders is minimal). Thus, HSIC-
and dCor-tests are crucial DDA procedures. When these tests indicate the pres-
ence of meaningful confounding, results of the remaining DDA procedures are no
longer trustworthy.”
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The algorithm used for the (third) DDA independence component is already
well-established in machine learning (see Peters, Janzing & Schölkopf, 2018, p.
62):

1. Fit a regression model f̂Y of Y on X
2. Test whether the residual Y − f̂Y (X) is independent of X.
3. Repeat the procedure by exchanging the roles of X and Y .
4. If the independence is accepted for one direction and rejected for the other,

infer the former one as the causal direction.

However, while the algorithm presented by Peters et al. (2018) is commonly
used to determine the causal direction for data with relationships strictly non-
linear, in the DDA framework, this algorithm is used assuming linearity and
non-normality (Thoemmes, 2019).

Here is the rationale behind the algorithm for DDA. For instance, let us then
assume that X and Y are two related continuous random variables such that :

Y = aX + εY with a 6= 0 (1)

where εY is the error term from a regression where Y is explained linearly as a
function of X. And let us assume that either X or εY is not normally distributed.
In this context, we get the falsehood of the expression

X ⊥⊥ εY AND Y ⊥⊥ εX (2)

where εX is the error term from an alternative linear regression having X ex-
plained linearly as a function of Y :

εX = X − bY with b 6= 0 (3)

The above reasoning relies on the corollary of the Darmois-Skitovich theorem
(see e.g.: Eberhardt, 2017, p.86):

Corollary 1. Let X1, ..., Xn be independent, non-degenerate random variables.
If for two linear combinations :

l1 = a1X1 + ...+ anXn with ai 6= 0 (4)

l2 = b1X1 + ...+ bnXn with bi 6= 0 (5)

at least one Xi is not normally distributed, then l1 and l2 are not independent.

After substitution of Y in (3) by its expression from (1):

εX = X − b(aX + εY ) = (1− ab)X − b εY (6)

it appears both εX and Y are linear combinations of X and εY . Applying Corol-
lary 1, it can then be affirmed that if X and εY are independent, non-degenerate
random variables that are not normally distributed in (1), then Y and εX can
not be independent in (3).

Then, as nicely illustrated in Spirtes & Zhang (2016) and in Wiedermann &
Li (2018), this asymmetric pattern of the causality can leave a footprint in the
data. Furthermore, the shape of the distribution does not matter, since it is not
a normal distribution.
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3.1 Limitations of the current DDA approach

Here we address the limitations of the current DDA approach for causal inference
in pairs of latent variables:

1. DDA does not exploit all the available information in measures
of dependencies. The DDA independence component approach relies on
a combination of two statistical tests of independence (see e.g., in equation
(2), one test for each possible causal direction). Four conclusions are possi-
ble: (a) rejection of both independences (i.e., suspicion of confounder), (b)
no rejection of both independences, and rejection of only one of the two
independences which gives either (c) X → Y or (d) Y → X. It is worth
remarking what follows:
(a) A non-significant result for a test of independence is recom-

mended to infer a causal direction. But, the lack of independence re-
jection is not a proof of independence. So, in DDA, how to be sure we
are not missing a confounder because of a lack of power in the test?

(b) Insufficient use of the continuum of dependencies. Given a pair
of variables, there is not only simplistically either “independence” or
“dependence” but a whole range of dependence strengths. Even if DDA
concludes in favour of the presence of a confounder (i.e, both indepen-
dences are rejected), the comparison of statistics of dependence from
both tests may convey additional information to favour one of the two
causal directions, under the assumption there is also causation in the
pair of variables of interest (beyond a simple spurious correlation).

2. Limit of the DDA distinction between “presence of a confounder”
and “causation”. In the DDA framework, the presence of a confounder may
be revealed by rejection of the independence for both directions whereas a
causation should be revealed by the rejection of the independence for only
one direction. But some theoretical models can include both causation and
confounder. Considering pairs of latent variables like in the example of the
causal Model 1 (Fig. 1, right) with no confounder between ξ and η, the latent
variable ξ can also be considered itself as a latent confounder between the
two groups of observed indicators: (X1, X2, X3) and (Y 1, Y 2, Y 3), where
each indicator is a linear combination including the latent variable ξ. So,
since ξ can be both a cause of η and a confounder between the two groups of
indicators, maybe it would be better not to rely on the DDA independence
component if we want to confirm there is no additional confounder between
latent ξ and latent η when it concludes in favor of a causation. And, if the
DDA independence component concludes there is a confounder, the question
of the direction for a possible causation remains still open after.

So, to infer a causation in a pair of non-Gaussian linearly related latent variables,
the point is maybe not to make sure first there is no latent confounder but to
focus instead on a direct comparison of the strength of each dependence (one for
each possible causal direction) to try to infer (if possible and with an associated
level of confidence) a causal direction like LC does.
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4 The Latent Causation algorithm

The main difference between the LC and the DDA independence component is
related to the computation of differences between the statistics of dependency,
which is an essential element to identify a causal direction. The Latent Causa-
tion (LC) pseudocode is detailed below. After the computation of factor scores
(Fξ, Fη) in steps (2a) and (2b) representing latent variables ξ and η respectively,
the steps (2c), (2d), (2e) and (2f) implement the DDA independence component.
However, if there is a true causal link between ξ and η, a difference of dependence
should be observed between values computed in (2e) and (2f). Unlike classical
DDA (yet inspired to a sensitivity analysis performed by Wiedermann and Se-
bastian (2019b) using bootstrap), the difference of values in (2f) and (2e) is
always saved by LC in step (2g). While a positive score in (2g) is favouring one
causal direction, a negative score is favouring the opposite causal direction. A
non-parametric bootstrap (B resamples) is then adopted to assess the significa-
tivity of the consensus. LC may reach 3 conclusions in step (4): “infer η → ξ”,
“infer ξ → η” or “data do not allow to conclude.” Unlike in classical DDA, we
do not need to have a non significant p-value to conclude for a causal direction.

The Latent Causation algorithm
Input:

– An observed dataset with indicators divided in 2 pre-defined groups (with
no overlap): X for the indicators of ξ, Y for the indicators of η.

– A metric to rate the strength of a bivariate dependence
– α: a threshold (to define acceptable type I error rate)
– B: number of bootstrap datasets

Output: A decision taken by the algorithm:
“infer η → ξ” OR “infer ξ → η” OR “data do not allow to conclude.”

1. From the original sample of size n, draw B bootstrap samples (size = n,
with replacement).

2. For each bootstrapped sample do :
(a) Compute the factor scores ”Fξ” to represent ξ using X (exclusively)
(b) Compute the factor scores “Fη” to represent η using Y (exclusively)
(c) Regress linearly Fη as a function of Fξ and save the residuals (residFη

)
(d) Regress linearly Fξ as a function of Fη and save the residuals (residFξ

)
(e) Measure how strong dependence(residFη ,Fξ) is
(f) Measure how strong dependence(residFξ

,Fη) is
(g) Save the difference between both measures from (f) and (e)

3. Based on the B saved differences (in 2g), select a percentile confidence in-
terval based on probabilities (α/2 ; 1− α/2).

4. Select a conclusion:
– If 0 is not included in the confidence interval:
• If a majority of bootrapped samples gave:

dependence(residFη
,Fξ) > dependence(residFξ

,Fη):
“infer η → ξ”
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• Else:
“infer ξ → η”

– Else:
“data do not allow to conclude.”

Some considerations on the LC algorithms follow:

– Factor scores computation: since the information about the latent variables
ξ and η is only available through noisy indicators, the question about their
representation naturally arises. While each indicator is assumed to be a
linear descendant of a specific latent variable of interest, we choose Principal
Component Analysis (PCA) (Husson, Lê & Pagès, 2009) to compute factor
scores separately for each latent variable ξ and η.

– Dependency measures: we considered 5 measures in our LC experiments:

• Spearman’s correlation (in absolute value).

• Brownian distance correlation (Szekely, Rizzo, & Bakirov, 2007): it re-
turns the dCor statistic (a score between [0;1] where 0 stands for inde-
pendence).

• dCor’s p-value : it estimates a p-value using permutation bootstrap.

• Hilbert-Schmidt Independence Criterion (HSIC; Gretton, Fukumizu, Teo,
Song, Schölkopf & Smola, 2008): The closer HSIC is with 0, the weaker
is the dependence.

• HSIC’s gamma-approximated p-value: The smaller the p-value is, the
more we are in independence rejection.

– LC relies on some assumptions:

• Two correlated non normal latent variables (i.e., ξ and η).

• All the relationships are linear (measurement model included).

• There is no cycle in the causations.

• Two distinct groups of indicators are available for ξ and for η respectively.
Each indicator is strongly correlated (e.g., Pearson’s correlation ≥ 0.7 in
our simulations) with its corresponding latent variable (either ξ or η).

• Each indicator is linearly function of its latent variable + an independent
random Gaussian noise.

• If there is a causal effect between ξ and η, it is assumed the effect is the
same for every individual (causal effect homogeneity).

• There is no unusual or influential observations.

• All the variables are continuous.

5 Experimental results

The experimental results are divided in two subsections: first, we use simulations
to compare LC and DDA. Second, additional analysis are provided to further
explore the performances of five LC variants.
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5.1 Benchmarking LC vs DDA

Data generation. In this section, to compare LC and DDA, we used the causal
structures from Model 0 and Model 1 to generate datasets by Monte Carlo
(1000 datasets for each model). The distributions and the standardized values
specified for the different coefficients (at the Population level) are available in
Fig. 1. Since we want to infer causation beyond correlation, we arbitrary specify
in every simulation in this paper the same theoretical Pearson’s correlation of
0.49 between ξ and η.

To generate our datasets and compare the methods, we implemented a sim-
ulator in the R language (R Core Team, 2019)1. We consider two groups of 3
indicators: X1, X2, X3 and Y1, Y2, Y3 measuring latent ξ and η respectively. Since
we cannot directly apply the DDA independence component on observed indica-
tors, factor scores representing ξ and η are first computed using the first axis in
two separated PCA (i.e., first axis build on X1, X2, X3 and other first axis build
on Y1, Y2, Y3). So, we used PCA2 in a similar way in LC and before applying
DDA.

Accuracy assessment. Table 1 reports the comparison DDA vs LC in terms of
accuracy. In DDA, since two p-values are used for taking decisions, 4 conclusions
are possible: ξ causes η, η causes ξ, suspicion of a latent confounder (both p-
values are sig.) and the “do not conclude” option (none of the 2 p-values is sig.).
In LC, based on a bootstrapped confidence interval, 3 conclusions are possible:
ξ causes η, η causes ξ and the “do not conclude” option.

Concerning DDA for Model 0 using HSIC gamma p-value or HSIC p-value
bootstrap (Sen and Sen, 2014) as independence test, it appears that (72 +
43)/1000 = 11.5% and (100 + 84)/1000 = 18.4% of the conclusions are false
positives (FP) (indicating wrongly causation) which exceeds in both cases the
maximum α = 5% allowed. In contrast, DDA’s dCor p-values seem to work fine
on Model 0 (FP rate: 0.4%), though this method shows less statistical power
(only 303 on 1000 datasets were true positive (TP) causal conclusions) than LC
variants (401 TP using Spearman as independence statistic, 510 TP using dCor-
stat, 343 TP using dCor-p-value, 594 TP using HSIC-stat and 608 TP using
HSIC’s gamma-approximated p-value).

In Table 1, all LC variants show a FP rate under the expected α = 5%
(e.g., the observed total FP rate using HSIC-stat = (1 + 2)/1000 = 0.3%) and
outperform in power (i.e., number of TP in Model 1) DDA’s dCor which is the
only considered DDA variant with a FP rate below α = 5%.

Discussion of results. To infer causation in a pair of correlated latent vari-
ables, we are looking for an algorithm with low type I error rate (i.e a proportion
of FP below the specified value for α) when there is no true causation between ξ

1 Code in https://github.com/apollaris/LatentCausation
2 In experiments we use the PCA function (using default option “scale.unit = TRUE”)

from the R package FactoMineR (Le, Josse & Husson, 2008).
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Table 1. The DDA independence component applied on factor scores from PCAs vs.
the LC algorithm (DNC stands for “Do not conclude”)

DDA
independence
component

Model 1: true causation ξ → η Model 0: no causation but a latent
confounder

Independence
statistic

ξ → η
(TP)

η → ξ
(FN)

Con-
founder
(FN)

DNC
(FN)

ξ → η
(FP)

η → ξ
(FP)

Con-
founder
(TN)

DNC
(TN)

dCor 303 0 0 697 2 2 0 996
HSIC - gamma 860 1 28 111 72 43 34 851
HSIC - bootstrap 870 1 71 58 100 84 62 754

LC algorithm Model 1: true causation ξ → η Model 0: no causation but a latent
confounder

Independence
statistic

ξ → η
(TP)

η → ξ
(FN)

DNC
(FN)

ξ → η
(FP)

η → ξ
(FP)

DNC
(TN)

Spearman 401 0 599 19 0 981
dCor - stat 510 0 490 1 0 999
dCor - p-value 343 0 657 0 0 1000
HSIC - stat 594 0 406 1 2 997
HSIC - p-value
gamma

608 0 392 0 3 997

Parameters specification:
- For both DDA and LC: 1000 samples generated for Model 1 and 1000 samples for Model 0;
sample size=500; α=0.05

- For DDA only: the number of replicates used for the estimation of each dCor-pvalue and the
number of resamples used to compute each bootstrap’s HSIC p-value were both set equal to 500.

- For LC only:, we used B = 1000 (bootstrap datasets) and the number of replicates used for the
estimation of each dCor-pvalue was always set equal to 300.

and η (e.g., Model 0) and with good ability to retrieve the correct causal direc-
tion (i.e., statistical power represented here by the number of TP for datasets
from Model 1). Looking only in our results at methods with an acceptable type I
error rate, it appears all the five variants of LC are more powerful than the only
acceptable DDA variant (using dCor as independence statistic). Furthermore,
Table 1 shows the impact of the dependence statistic on the results (see e.g., for
LC: 343 TP using dCor - p-value but 608 TP using HSIC’s gamma-approximated
p-value). The next section will present a LC sensitivity study to assess the role
of the five statistics.

5.2 LC sensitivity study

Here we perform additional simulations to study the sensitivity of the LC ac-
curacy to its parameters. Good accuracy means low type I errors (i.e., the pro-
portion of FP can not be larger than α in the absence of causation between
ξ and η) and good statistical power (i.e., a large number of TP is expected
under causation between ξ and η). First, we show the statistical power of LC
increases for larger sample sizes. Next, α’s value is manipulated to show that
LC does not exceed the allowed the type I error rate. Then we show that the
TP rate increases with α. Finally, ROC curves visualize the ability of the five
LC variants to discriminate beween a spurious correlation (i.e., Model 0) and a
causation (i.e., Model 1). Because many different confounders can make a pair
of latent variable (ξ,η) correlate, we conclude this section by a robustness anal-
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ysis to answer the question: “Can a latent confounder U (due to its distribution
and its correlations with ξ and η) increase LC’s number of FP in the absence of
causation between ξ and η?”

Sample size can increase the power of LC. 1000 datasets of different sample
sizes (n = 200, n = 300, n = 400, n = 500) were simulated according to Model
1 (Fig. 1, right), i.e. with a true latent causation ξ → η.

As observed in Fig. 2 upper left, the larger the sample size, the better is LC
in retrieving ξ → η. Furthermore, comparing the five variants of independence
statistics, the methods based on HSIC appear here to be the most powerful.
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Fig. 2. Upper left: Power of the LC algorithm for retrieving the true ξ → η as
a function of the sample size and the statistic used to measure independence; 1000
simulated datasets based on Model 1 for each sample size. Upper right: observed type
I error rate (% of FP) for LC as a function of α. Lower left: observed power rate (% of
TP) for LC as a function of α. Lower right: ROC curves for the 5 variants to measure
dependence using LC ; for each curve, the different points correspond to different values
assigned to α. For each last 3 plots: Sample size=500, 1000 simulated datasets for each
estimation.
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Manipulations on α. Using 1000 datasets generated from each model (Model
0 and Model 1) with a sample size n = 500, we manipulate the specified value of
α to get the number of FP (for data generated from Model 0) and the number
of TP (for data generated from Model 1). Here are the different values assigned
to α: .01, .02, .03, .04, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9.

Results in Fig. 2, upper right, show as expected for Model 0 that observed
type I error rate (i.e., the proportion of FP) is always lower than the specified
value of α in our simulations (whatever the method or the value of α).

Fig. 2 lower left shows that the number of correct causal direction (TP)
increases with higher values of α and that the number of TP also differs be-
tween the five variants (measures of dependence). Notably, using HSIC’s gamma-
approximated p-values seem to get more TP compared with other observed meth-
ods. Then, by increasing α the number of both TP and FP increases as well. In
Fig. 2 lower right, ROC curves to discriminate between Model 0 and Model 1
show that the methods (apart from Spearman correlation) present similar good
abilities to discriminate between Model 1 (causation) and Model 0 (confounder).

Robustness: distribution and correlation with a latent confounder.
Since estimated scores Fξ, residFη

, Fη and residFξ
in Model 0 are all linear com-

binations of a sum of terms including the latent confounder U , according to
Corollary 1 (of the Darmois-Skitovich theorem), Fξ 6⊥⊥ residFη and Fη 6⊥⊥ residFξ

are expected together because U is not normally distributed (see also, Wieder-
mann et al., 2018). So, using additional simulated datasets (Monte Carlo), an
empirical analysis of the robustness for LC is now performed to know if inflated
type I errors (i.e, FP) can be avoided. While keeping constant the theoretical
Pearson’s correlation between ξ and η (as a reminder it was arbitrary set equal
to 0.49 for our simulations), we generate additional datasets after manipula-
tion of the distribution (symmetric uniform VS asymmetric chi-square) and the
Pearson’s correlation between U and ξ (and then also the Pearson’s correlation
between U and η) (see Fig. 3: Model 0 and its 4 variants : 0a, 0b, 0c and 0d
for correlations assigned to the confounder). Because all methods to measure
dependence were also compared here, we have now a “2 distributions of U × 5
models × 5 methods for statistics of dependence” design.

In the different plots in Fig. 4, the correlations of U influence the number
of FP: for a strong correlation between U and ξ, the risk to conclude wrongly
that ξ causes η increases ; on the opposite, when U mainly correlates with η,
the risk to conclude wrongly that η causes ξ increases. However, the impact of
the correlation of U is strongly reduced when U is symmetrical uniform (plots
on the left) compared with an asymmetrical chi-square U (df = 1) (plots on
the right). Fortunately, the problem of the distribution and correlations of U
seems possible to overcome: looking at the dCor p-value method, the number
of FP never exceeds 60, even when a very strong correlation of 0.875 between a
chi-square U (df = 1) and η has been specified.

The last results seem to favour the method based of differences of dCor’s p-
values under the assumption of an influent latent confounder. However, a deeper
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Other confounders

X1 X2 X3 Y1 Y2 Y3

𝜀𝑋1 𝜀𝑋2 𝜀𝑋3 𝜀𝑌1 𝜀𝑌2 𝜀𝑌3

𝜉 𝜂

0.7 0.70.8 0.9
0.8 0.9

0.7𝜀𝜉

𝑈

0.7

Model 0: 49% of the variability of 𝜉 explained by U

𝜀𝜉 follows a uniform distribution 

𝜀𝜂 follows a random gaussian

distribution
𝜀𝑋1, 𝜀𝑋2, 𝜀𝑋3, 𝜀𝑌1, 𝜀𝑌2, 𝜀𝑌3 follow 
each a random gaussian distribution

𝜀𝜂

𝜉 𝜂

0.875
𝜀𝜉

𝑈
0.56 𝜀𝜂

𝜉 𝜂

0.8
𝜀𝜉

𝑈
0.6125 𝜀𝜂

𝜉 𝜂

0.8
𝜀𝜉

𝑈
0.6125 𝜀𝜂

𝜉 𝜂

0.875
𝜀𝜉

𝑈
0.56 𝜀𝜂

Model 0a: 76.5625% of the variability of 𝜉 explained by U

Model 0b: 64% of the variability of 𝜉 explained by U

Model 0c: 37.51563% of the variability of 𝜉 explained by U

Model 0d: 31.36% of the variability of 𝜉 explained by U

Fig. 3. In order to study the impact of the correlations of the confounder, simulations
rely on variations of Model 0. While the population level’s correlation between ξ and η
is kept constant and equal to an arbitrary set value of 0.49, the confounder U is made
more correlated with ξ in Models 0a and 0b and more correlated with η in Models 0c
and 0d. In Models 0a, 0b, 0c, 0d, the measurement model (same as in Model 0) is not
displayed to save space.

look at the results from extreme Models 0a and 0d with a chi-square U , reveals
that for the variant using differences of HSIC’s p-values, despite of the very high
number of FP, the median of differences scores (-4.77e-3 for simulations based
on Model 0a ; 2.14e-2 for simulations based on Model 0d) is not far from the
expected 0. So, methods based on differences of p-values might have a small
recurrent bias due to the presence of a (very) asymmetric, strongly correlated U
with either ξ or η. Using difference of dCor’s p-values, this bias can be hidden
due to the random bootstrapped estimation of each p-value.

6 Conclusions and future directions

In this paper, we propose LC, an algorithm for causal inference in a pair of la-
tent variables for confirmatory analysis. In this specific context, LC appears to be
better suited than classical DDA to differentiate causation and confounder pat-
terns from data. The resulting recommendation is then to enrich DDA analysis
with bootstrapped differences of independence statistics (possibly also outside
the context of latent variables).

Directions for LC improvement may also be considered. For instance, promis-
ing research directions to extend the current work are:

– Considering alternative ways to compute factors scores. There are
indeed alternatives to PCAs to represent latent ξ and η.
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Fig. 4. Kinds of type I errors (FP) for each variant to measure dependence as a function
of the distribution and the correlations of the latent confounder U (see Model 0 and
variants 0a, 0b, 0c, 0d). Theoretical Pearson’s correlation between ξ and η at the
population level is always set equal to 0.49 in our simulation; sample size = 500, 1000
simulated datasets for each ten couples (5 models × 2 distributions of confounder)
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– Inclusion of an additional parameter allowing the user of LC to
round to 0 each absolute difference of HSIC’s p-values below a
given specified threshold. Whereas the variant based on differences of
HSIC’s gamma-approximated p-values gives some very good results, differ-
ences of bootstrap approximated dCor’s p-values show more robustness in
the presence of some specific latent confounders. However, about HSIC’s
gamma-approximated p-values, we remark that wrong conclusions in the
robustness analysis come with a small persistent bias in the difference of
p-values. So, rounding to 0 the very small observed differences in HSIC’s
gamma approximated p-value could improve its robustness.

– Relaxing some assumptions of LC and comparison with other al-
gorithms. For instance, relaxing some assumptions, LC could be compared
with parts of Cai et al. (2019)’s method. More widely speaking, future works
should study the performances of LC under relaxed assumptions.

– Manipulation of other parameters and additional comparisons us-
ing other models. For instances, in our models, some distributions could
be changed and other models could be considered. For instance, whereas
Model 0 and Model 1 differed by the causal pattern and by the marginal dis-
tributions assigned to latent ξ and η respectively, an alternative for Model 0
would be to set exactly the same distributions for ξ and η than in Model 1
but with a specified theoretical correlation of 0. Furthermore, other models
should also include confounder and causation together.

– Presence of an observed confounder. Corrections in each bootstrapped
dataset could be included in LC to increase the accuracy.

Last but not least, future work should also test LC on real data as benchmark.
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